摘要:
A system is disclosed that can measure the vertical height and/or the hang time of a jump. The system includes an acceleration detector, a controller, a display, a power source and a case that houses the components in a manner that allows the device to be worn or held by a person or object. The acceleration detector is used to determine the start of a jump and the end of a jump. Based on the time elapsed between the start of the jump and the end of the jump, the controller can determine the vertical height of the jump and/or the hang time.
摘要:
A system is disclosed that can determine the distance a baseball would have traveled after being hit if its path was not interrupted. Thus, when a player hits a home run and the ball collides with an obstruction such as the seating area of a stadium or a wall, the present invention can determine how far the ball would have traveled had the ball not hit the stadium or the wall. The present invention can also be used to determine information about the path of objects other than a baseball.
摘要:
A graphic and video are blended by controlling the relative transparency of corresponding pixels in the graphic and the video through the use of blending coefficients. One example of a blending coefficient is an alpha signal used in conjunction with a keyer. The value of a blending coefficient for a pixel in the graphic is based on the luminance and chrominance characteristics of a neighborhood of pixels in the video. Inclusions and exclusions are set up which define how the neighborhood of pixels is used to create or change a particular blending characteristic.
摘要:
A telestrator system is disclosed that allows a broadcaster to annotate video during or after an event. For example, while televising a sporting event, an announcer (or other user) can use the present invention to draw over the video of the event to highlight one or more actions, features, etc. In one embodiment, when the announcer draws over the video, it appears that the announcer is drawing on the field or location of the event. Such an appearance can be performed by mapping the pixels location from the user's drawing to three dimensional locations at the event. Other embodiments include drawing on the video without obscuring persons and/or other specified objects, and/or smoothing the drawings in real time.
摘要:
A system is disclosed that can be used to enhance a video of an event. Sensors are used at the event to acquire information. For example, the system can include pan, tilt and zoom sensors to acquire camera view information. This information can be added to the video signal from a camera (e.g. in the vertical blanking interval) or otherwise transmitted to a central studio. At the studio, the sensor information is used to enhance the video for broadcast. Example enhancements include drawing lines or other shapes in the video, adding advertisements to the video or adding other graphics to the video.
摘要:
A system determines the vertical position of an object and report that vertical position in a format suitable for use on a television broadcast, a radio broadcast, the Internet or another medium. One example of a suitable use for the system includes determining the height that a basketball player jumped and adding a graphic to a television broadcast that displays the determined height. The system includes two or more cameras that capture a video image of the object being measured. The object's position in the video images is determined and is used to find the three dimensional location of the object. The three dimensional location includes a height coordinate. In some cases, the height coordinate is the desired vertical position. In other cases, the height or size of the object may be subtracted from the height coordinate to determined the vertical position.
摘要:
An object is detected in images of a live event by storing and indexing templates based on representations of the object from previous images. For example, the object may be a vehicle which repeatedly traverses a course. A first set of images of the live event is captured when the object is at different locations in the live event. A representation of the object in each image is obtained, such as by image recognition techniques, and a corresponding template is stored. When the object again traverses the course, for each location, the stored template which is indexed to the location can be retrieved for use in detecting the object in a current image. The object's current location may be obtained from GPS data from the object, for instance, or from camera sensor data, e.g., pan, tilt and zoom, which indicates a direction in which the camera is pointed.
摘要:
An object is detected in images of a live event by storing and indexing templates based on representations of the object from previous images. For example, the object may be a vehicle which repeatedly traverses a course. A first set of images of the live event is captured when the object is at different locations in the live event. A representation of the object in each image is obtained, such as by image recognition techniques, and a corresponding template is stored. When the object again traverses the course, for each location, the stored template which is indexed to the location can be retrieved for use in detecting the object in a current image. The object's current location may be obtained from GPS data from the object, for instance, or from camera sensor data, e.g., pan, tilt and zoom, which indicates a direction in which the camera is pointed.
摘要:
Camera registration and/or sensor data is updated during a live event by determining a difference between an estimated position of an object in an image and an actual position of the object in the image. The estimated position of the object in the image can be based on an estimated position of the object in the live event, e.g., based on GPS or other location data. This position is transformed to the image space using current camera registration and/or sensor data. The actual position of the object in the image can be determined by template matching which accounts for an orientation of the object, a shape of the object, an estimated size of the representation of the object in the image, and the estimated position of the object in the image. The updated camera registration/sensor data can be used in detecting an object in a subsequent image.
摘要:
Camera registration and/or sensor data is updated during a live event by determining a difference between an estimated position of an object in an image and an actual position of the object in the image. The estimated position of the object in the image can be based on an estimated position of the object in the live event, e.g., based on GPS or other location data. This position is transformed to the image space using current camera registration and/or sensor data. The actual position of the object in the image can be determined by template matching which accounts for an orientation of the object, a shape of the object, an estimated size of the representation of the object in the image, and the estimated position of the object in the image. The updated camera registration/sensor data can be used in detecting an object in a subsequent image.