Abstract:
A tumor-targeting gas-generating nanoparticle, a method for preparing same and a tumor-targeting nanoparticle for drug delivery using same relate to a tumor-targeting gas-generating nanoparticle including a polycarbonate core and a amphiphilic coat, a method for preparing same and a tumor-targeting nanoparticle for drug delivery using same. Since a tumor-targeting gas-generating nanoparticle according to the present disclosure is accumulated in the tumor tissue in large quantity and generates strong ultrasound wave signals, it can be usefully used as a contrast agent for ultrasonic imaging.
Abstract:
An apparatus for tissue ablation according to an embodiment of the present disclosure includes an ultrasound output unit to output focused ultrasound, and a control unit to control an intensity of the focused ultrasound, wherein the control unit may be configured to control the intensity of the focused ultrasound below a setting value, when a first condition in which a vapor bubble is formed in a tissue or a second condition in which a temperature of the tissue reaches a threshold is accomplished during the output of the focused ultrasound to the tissue. According to this embodiment, it is possible to precisely control vapor bubble dynamics without generating the shockwave scattering effect by instantaneously controlling the acoustic pressure and the intensity of the focused ultrasound, and prevent damage to a tissue other than a lesion to be removed.
Abstract:
According to an embodiment of the present disclosure, there is provided a completely new type of 3-dimensional (3D) printing method for producing an object by focusing ultrasound onto material that changes in state by stimulation to solidify it into a desired shape. The method for 3D printing according to an embodiment includes providing material which changes in state by stimulation, setting a target focal point in the material, focusing ultrasound onto the target focal point using at least one ultrasound transducer, and applying stimulation to the material using the focused ultrasound to induce a change in state of the material. According to the embodiments, it is possible to control the precision of the output by controlling the frequency of the ultrasound transducer or the size of the target focal point on system.
Abstract:
A high-low intensity focused ultrasound treatment apparatus according to the present disclosure includes a plurality of ultrasound sources, and a controller to control a center frequency and intensity of focused ultrasound outputted from the ultrasound sources, wherein each of the ultrasound sources includes a first ultrasound transducer to output low-intensity focused ultrasound to detect a lesion, and a second ultrasound transducer to output high-intensity focused ultrasound to ablate or remove the detected lesion. The low-intensity focused ultrasound outputted from the first transducer may be used to detect a lesion in a patient's brain by applying a stimulus to the brain, and at the same time, investigating a response, and the high-intensity focused ultrasound outputted from the second transducer may be used to ablate or remove the detected lesion by applying a thermal or mechanical stimulus to the lesion.
Abstract:
The present invention relates to a stress analysis method including: acquiring bio-signals from a test subject; calculating a probability of each of a plurality of stress level values by processing the bio-signals using a deep neural network algorithm; estimating a stress level value with the maximum probability of the plurality of stress level values as a stress level value of the test subject; determining usefulness of the estimated stress level value; and outputting the estimated stress level value determined to be useful through the determination of usefulness, as the final stress level.
Abstract:
The present disclosure relates to a method for in vivo targeting of a nanoparticle via bioorthogonal copper-free click chemistry, more particularly to a method for in vivo targeting of a nanoparticle, including: injecting a precursor capable of being metabolically engineered in vivo when injected into a living system and having a first bioorthogonal functional group into the living system; and injecting a nanoparticle having a second bioorthogonal functional group which can perform a bioorthogonal copper-free click reaction with the first bioorthogonal functional group attached thereto into the living system.In accordance with the present disclosure, accumulation of nanoparticles at a target site in a living system can be increased remarkably and the biodistribution of the nanoparticles can be controlled since the nanoparticles bound to a cell surface are taken up into the cell with time.
Abstract:
A neural tube capable of complexly playing roles of a support for regenerating a nerve and a nerve electrode has a support connected to a terminal of an injured nerve, and a sieve electrode having an electrode hole formed in a body thereof and a circular electrode formed around the electrode hole, wherein the body of the sieve electrode is buried in the support, wherein a cavity-type channel is formed at the support to extend to the inside of the support, wherein the electrode hole is aligned with the channel, and wherein a nerve cell growing along the channel at the terminal of the injured nerve is capable of contacting the circular electrode.