摘要:
An implantable medical device such as a defibrillator is described. The device includes an hermetically sealed housing containing a flat electrolytic capacitor and an energy source such as a battery. The battery is connected to the capacitor and provides charge thereto. The capacitor stores the charge at a relatively high voltage. The charge stored in the capacitor is discharged through a defibrillation lead to a site on or in the heart when fibrillation of the heart is detected by the implantable medical device. Methods of making and using the implantable medical device, the capacitor, and their various components are disclosed.
摘要:
An implantable medical device such as a defibrillator is described. The device includes an hermetically sealed housing containing a flat electrolytic capacitor and an energy source such as a battery. The battery is connected to the capacitor and provides charge thereto. The capacitor stores the charge at a relatively high voltage. The charge stored in the capacitor is discharged through a defibrillation lead to a site on or in the heart when fibrillation of the heart is detected by the implantable medical device. Methods of making and using the implantable medical device, the capacitor, and their various components are disclosed.
摘要:
An electrochemical cell for use in an implantable medical device is presented. The electrochemical cell includes a cover having a first surface and a second surface separated by an outer edge. The electrochemical cell also includes a case having a planar bottom, a side extending upwardly from the planar bottom, and an open top for receiving the cover.
摘要:
An electrochemical cell of an implantable medical device is provided. The electrochemical cell comprises a conductive case and a cover welded to the case to form a hermetically-sealed housing. A cathode is disposed adjacent to a surface of the case within the hermetically-sealed housing and an anode is disposed within the hermetically-sealed housing. An immobilization system is disposed between the anode and the hermetically-sealed housing. The immobilization system is configured to minimize movement of the anode relative to the housing and is adapted to thermally insulate the anode during fabrication of the hermetically-sealed housing.
摘要:
A capacitor structure having a shallow drawn encasement includes first and second major sides and a peripheral wall coupled to first and second major sides. First and second anodes are positioned within the encasement proximate the interior surfaces of the first and second major sides respectively. A cathode is positioned within the encasement intermediate the first and second anodes.
摘要:
A capacitor structure comprises a shallow drawn encasement having first and second major sides and a peripheral wall coupled to the first and second sides. A cathode is disposed within the encasement proximate the first and second major sides, the cathode having a cathode lead. A central anode a having an anode lead is disposed within the encasement, and a bipolar, insulative feedthrough extends through the encasement through which electrical coupling may be made to the anode lead and the cathode lead.
摘要:
A capacitor structure comprises a shallow drawn case having a first major side and a peripheral wall extending therefrom, the first major side having a first interior surface and the wall having a peripheral interior surface. A lid is sealingly coupled to the case along adjacent edges of the lid and the wall, the lid and said case forming an encasement of the capacitor structure, the lid comprising a second interior surface. A cathode material is disposed proximate the first and second interior surfaces, and an anode is positioned intermediate the cathode material and has a peripheral portion positioned proximate the adjacent edges. A protective layer on the peripheral portion protects the anode during the sealing process. A first insulative separator is positioned between the anode and the cathode material.
摘要:
Flat electrolytic capacitors, particularly, for use in implantable medical devices (IMDs), and the methods of fabrication of same are disclosed. The capacitors are formed with an electrode stack assembly comprising a plurality of stacked capacitor layers each comprising an anode sub-assembly of at least one anode layer, a cathode layer and separator layers wherein the anode and cathode layers have differing dimensions that avoid electrical short circuits between peripheral edges of adjacent anode and cathode layers but maximize anode electrode surface area. The electrolytic capacitor is formed of a capacitor case defining an interior case chamber and case chamber periphery, an electrode stack assembly of a plurality of stacked capacitor layers having anode and cathode tabs disposed in the interior case chamber, an electrical connector assembly for providing electrical connection with the anode and cathode tabs through the case, a cover, and electrolyte filling the remaining space within the interior case chamber. The plurality of capacitor layers and further separator layers are stacked into the electrode stack assembly and disposed within the interior case chamber such that the adjacent anode and cathode layers are electrically isolated from one another. The anode layer peripheral edges of the anode sub-assemblies of the stacked capacitor layers extend closer to the case side wall than the cathode peripheral edges of the cathode layers of the stack of capacitor layers throughout a major portion of the case chamber periphery. The separator layer peripheral edges extend to the case periphery and space the anode layer peripheral edges therefrom. Any burrs, debris or distortions along or of any of the anode layer peripheral edges causing the anode layer edges to effectively extend in the electrode stack height direction causes the anode layer peripheral edges having such tendency to contact an adjacent anode layer. In this way, anode layer surface area is maximized, and short circuiting of the anode layers with the cathode layers is avoided. A case liner can also be disposed around the electrode stack assembly periphery.
摘要:
Flat electrolytic capacitors, particularly, for use in implantable medical devices (IMDs), and the methods of fabrication of same are disclosed. The capacitors are formed with an electrode stack assembly comprising a plurality of stacked capacitor layers each comprising an anode sub-assembly of at least one anode layer, a cathode layer and separator layers wherein the anode and cathode layers have differing dimensions that avoid electrical short circuits between peripheral edges of adjacent anode and cathode layers but maximize anode electrode surface area. The electrolytic capacitor is formed of a capacitor case defining an interior case chamber and case chamber periphery, an electrode stack assembly of a plurality of stacked capacitor layers having anode and cathode tabs disposed in the interior case chamber, an electrical connector assembly for providing electrical connection with the anode and cathode tabs through the case, a cover, and electrolyte filling the remaining space within the interior case chamber. The plurality of capacitor layers and further separator layers are stacked into the electrode stack assembly and disposed within the interior case chamber such that the adjacent anode and cathode layers are electrically isolated from one another. The anode layer peripheral edges of the anode sub-assemblies of the stacked capacitor layers extend closer to the case side wall than the cathode peripheral edges of the cathode layers of the stack of capacitor layers throughout a major portion of the case chamber periphery. The separator layer peripheral edges extend to the case periphery and space the anode layer peripheral edges therefrom. Any burrs, debris or distortions along or of any of the anode layer peripheral edges causing the anode layer edges to effectively extend in the electrode stack height direction causes the anode layer peripheral edges having such tendency to contact an adjacent anode layer. In this way, anode layer surface area is maximized, and short circuiting of the anode layers with the cathode layers is avoided. A case liner can also be disposed around the electrode stack assembly periphery.
摘要:
A capacitor is described. The capacitor includes a case chamber. An electrode stack assembly is disposed within the case chamber. The electrode stack assembly includes a layer. The layer includes an anode subassembly. The anode subassembly comprises at least one anode layer that has an anode edge disposed at a first distance from an interior wall of the case chamber. The layer also includes a capacitor layer. The capacitor layer includes a cathode edge disposed at a second distance from the wall interior. The second distance is greater than the first distance.