Abstract:
Disclosed are an organic light emitting display and a method of manufacturing the same. The organic light emitting includes a first substrate, a first electrode, an organic light emitting layer, and a second electrode. The first substrate includes a pixel region showing an image and a peripheral region surrounding the pixel region. The first electrode is formed in the pixel region of the first substrate. The organic light emitting layer is formed on the first electrode. The second electrode is formed on the organic light emitting layer and extends to the peripheral region. An auxiliary electrode is formed on the second electrode to contact the second electrode on an entire surface of the first substrate, thereby applying a voltage having the same voltage level as that of the second electrode.
Abstract:
An organic light emitting display device for displaying 2D and 3D image, the organic light emitting display device including a scan driver for supplying a scan signal to a plurality of scan lines; a data driver for supplying a data signal to a plurality of data lines; a plurality of pixels that located at crossing regions of the scan lines and the data lines for controlling a current flowing from a first power driver to a second power driver via an organic light emitting diode; a data processor for classifying data supplied from outside as 2D or 3D data, and for producing 2D or 3D; and a timing controller for transmitting 2D or 3D data supplied from the data processor to the data driver, wherein the timing controller is configured to set the pixels in a non-emission state during a scan period.
Abstract:
Disclosed are an organic light emitting display and a method of manufacturing the same. The organic light emitting includes a first substrate, a first electrode, an organic light emitting layer, and a second electrode. The first substrate includes a pixel region showing an image and a peripheral region surrounding the pixel region. The first electrode is formed in the pixel region of the first substrate. The organic light emitting layer is formed on the first electrode. The second electrode is formed on the organic light emitting layer and extends to the peripheral region. An auxiliary electrode is formed on the second electrode to contact the second electrode on an entire surface of the first substrate, thereby applying a voltage having the same voltage level as that of the second electrode.
Abstract:
Provided are an illumination sensing apparatus, a driving method thereof and a display device having the illumination sensing apparatus. The illumination sensing apparatus includes an illumination sensor unit configured to generate a sensing signal according to peripheral illumination, an illumination determination unit configured to generate an illumination signal according to the sensing signal, and an illumination judgment unit configured to output a brightness select signal using the illumination signal, wherein the illumination sensor unit controls sensitivity of sensing the peripheral illumination to be varied according to the brightness select signal. Therefore, the sensitivity of an illumination sensor is automatically controlled according to the peripheral illumination, thus improving peripheral illumination sensibility. Further, an illumination signal corresponding to the peripheral illumination is provided to a light source module to thereby control the output brightness of the light source module, which makes it possible to reduce power consumption and improve image quality.
Abstract:
A liquid crystal display includes a display panel having a data-storing unit including transistors integrated into the display panel. The data-storing transistors of the data-storing unit may be formed in the same film (layer) as the TFT pixel transistors on the display panel. Each of the plurality of transistors of the data-storing unit includes an input electrode connected to one of a first voltage or a second voltage depending upon a bit of stored data, and an output electrode commonly connected to a data output terminal of the data-storing unit. The data-storing unit further includes and a Serial-In, Parallel-Out shift register supplied with a reset and first and second clock signals and connected to the input electrodes of the transistors, respectively.