Abstract:
Disclosed is a negative electrode active material which includes: secondary particles having a plurality of primary particles which include a silicon oxide composite including i) Si, ii) a silicon oxide represented by SiOx (0
Abstract:
Disclosed is a negative electrode for a lithium secondary battery which includes: a negative electrode current collector; a first negative electrode mixture layer positioned on at least one surface of the negative electrode current collector and including a first negative electrode active material, a polymer binder and a conductive material; and a second negative electrode mixture layer positioned on the top surface of the first negative electrode mixture layer and including a second negative electrode active material, a polymer binder and a conductive material, wherein the second negative electrode active material has a smaller water contact angle as compared to the first negative electrode active material, and at least one of the first negative electrode active material and the second negative electrode active material is surface-modified.
Abstract:
The anode active material of the present invention comprises silicon-based particles obtained from at least one of silicon, a silicon oxide and a silicon alloy, and the silicon-based particles have a faceted shape, thereby providing high capacity and good life characteristics without causing any deterioration which has been generated in the use of conventional silicon-based particles, and eventually providing a lithium secondary battery having such characteristics.
Abstract:
The present invention relates to an electrode active material for a lithium secondary battery and the preparation thereof. The electrode active material for a lithium secondary battery according to the present invention comprises a core including (a) first particulates consisting of an oxide of a metal (metalloid) capable of alloying with lithium, and (b) second particulates consisting of an oxide containing the same metal (metalloid) together with lithium; and a conductive carbon layer coated on the surface of the core. The electrode active material of the present invention has high capacity and improved electric conductivity, thereby providing good charge and discharge rate capability.
Abstract:
The anode active material of the present invention comprises an amorphous SiOx C composite with a core-shell structure consisting of a core comprising particles of a silicon oxide (SiOx) free of Si crystals and a shell which is a coating layer formed on at least a part of the surface of the core and comprising a carbon material, thereby providing high capacity and effectively inhibiting volume expansion which has been caused in the use of Si, to improve life characteristics, and eventually providing a lithium secondary battery having such characteristics.
Abstract translation:本发明的负极活性物质包括由包含不含Si晶体的氧化硅(SiO x)颗粒的芯构成的核 - 壳结构的无定形SiO x C复合体,以及形成在至少 芯的表面的一部分并且包括碳材料,从而提供高容量并且有效地抑制了在使用Si时引起的体积膨胀,以改善寿命特性,并最终提供具有这种特性的锂二次电池。
Abstract:
The present disclosure relates to an anode active material comprising a composite of a core-shell structure, a lithium secondary battery comprising the same, and a method of manufacturing the anode active material. According to an aspect of the present disclosure, there is provided an anode active material of a core-shell structure comprising a core including alloyed (quasi)metal oxide-Li (MOx—Liy) and a shell including a carbon material coated on a surface of the core. According to another aspect of the present disclosure, there is provided a method of manufacturing the anode active material of the core-shell structure. According to an aspect of the present disclosure, an anode active material with high capacity, excellent cycle characteristics and volume expansion control capacity, and high initial efficiency is provided.
Abstract:
A negative electrode active material for a lithium secondary battery which includes a silicon oxide-based composite represented by M-SiOx (wherein 0
Abstract:
A negative electrode active material including a core, an intermediate layer on a surface of the core, and a shell layer on a surface of the intermediate layer, wherein the core includes a silicon oxide of SiOx (0
Abstract:
Composite particles and a negative electrode active material including such particles for an electrochemical device. The negative electrode active material is capable of lithium intercalation/deintercalation and includes composite particles including a carbon phase including a carbonaceous material, silicon (Si) and lithium fluoride (LiF). The Si and LiF may be present as Si—LiF mixed particles, which are dispersed in the carbon phase, wherein the Si—LiF mixed particles are dispersed in the carbon phase with uniform or non-uniform distribution. In addition, the composite particles include the carbon phase mixed uniformly or amorphously with the Si—LiF mixed particles.
Abstract:
Disclosed is a negative electrode for a lithium secondary battery which includes: a negative electrode current collector; a first negative electrode mixture layer positioned on at least one surface of the negative electrode current collector and including a first negative electrode active material, a polymer binder and a conductive material; and a second negative electrode mixture layer positioned on the top surface of the first negative electrode mixture layer and including a second negative electrode active material, a polymer binder and a conductive material, wherein the second negative electrode active material has a smaller water contact angle as compared to the first negative electrode active material, and at least one of the first negative electrode active material and the second negative electrode active material is surface-modified.