Abstract:
Various embodiments relate to an EM signal control circuit, an EM signal control method, and an organic light emitting display device. The EM signal control circuit according to an embodiment of the present invention includes additional elements (e.g., a transistor and a capacitor) configured to separate a set signal from a gate electrode of a transistor coupled to an output node and to stably keep turn-off of a transistor coupled to the output node. Voltage levels of a first emission power source and a first gate power source may be set differently from each other according to the present invention. Therefore, despite of a threshold voltage change of a transistor coupled to an output node, the transistor may remain turned off stably, thereby improving the reliability of the EM signal.
Abstract:
A transparent organic light-emitting display device is described herein. The transparent substrate includes a display area and non-display area adjacent to the display area. An organic light-emitting element is disposed on the display area of the transparent substrate. A first power line is disposed on the display area of the transparent substrate. The first power line supplies power to the organic light-emitting element. A first circuit board comprises a first power supply provided on a first side of the transparent substrate and a second circuit board comprises a second power supply provided on a second side of the transparent substrate. The first power supply is configured to receive power from the second power supply via the first power line. An additional interconnection film to supply power to the first power supply is not required, and thus the width of the bezel can be reduced.
Abstract:
An OLED display device with a touch screen includes first and second substrates; organic light emitting diodes in the display area over the first substrate; first pads and second pads in the non-display area over the first substrate; first and second touch electrodes in the display area over the second substrate; touch pads in the non-display area over the second substrate and corresponding to and overlapping the second pads, respectively; and a first adhesive layer between the first and second substrates and exposing the first and second pads, wherein pad contact holes pass through the second substrate, the touch pads, and the first adhesive layer and expose the second pads, respectively, and wherein a conduction means is disposed in each of the pad contact holes and electrically connects each of the touch pads with a corresponding second pad.
Abstract:
There is provided a TFT backplane having at least one TFT with oxide active layer and at least one TFT with poly-silicon active layer. In the embodiments of the present disclosure, at least one of the TFTs implementing the circuit of pixels in the active area is an oxide TFT (i.e., TFT with oxide semiconductor) while at least one of the TFTs implementing the driving circuit next to the active area is a LTPS TFT (i.e., TFT with poly-Si semiconductor).
Abstract:
There is provided a TFT backplane having at least one TFT with oxide active layer and at least one TFT with poly-silicon active layer. In the embodiments of the present disclosure, at least one of the TFTs implementing the circuit of pixels in the active area is an oxide TFT (i.e., TFT with oxide semiconductor) while at least one of the TFTs implementing the driving circuit next to the active area is a LTPS TFT (i.e., TFT with poly-Si semiconductor).
Abstract:
Disclosed is a display apparatus capable of reducing a voltage drop of a common electrode and improving a transmittance. The display apparatus comprises a substrate including a display area having a first area and a second area, a first electrode disposed on the substrate and configured to cover the first area and the second area, a first common power line disposed between the substrate and the first electrode and connected to the first electrode provided in the first area, and a second common power line connected to the first electrode provided in the second area through the first area.
Abstract:
A display device may reduce or minimize a size of a light emission area that becomes a dark spot due to particles. The display device includes a substrate provided with a display area for displaying an image by subpixels, first electrodes provided in each of the subpixels over the substrate, driving transistors provided between the substrate and the first electrodes and coupled to each of the first electrodes, a light emitting layer provided over the first electrodes, and a second electrode provided over the light emitting layer. Each of the first electrodes includes divided electrodes spaced apart from each other, a transistor contact portion coupled with the driving transistor through a contact hole, and connection electrodes coupling each of the plurality of divided electrodes with the transistor contact portion.
Abstract:
A display device can include a first sub pixel disposed on a substrate; a second sub pixel disposed on the substrate, the second sub pixel being adjacent to the first sub pixel; a first electrode disposed in each of the first and second sub pixels; a first capacitor disposed on the first electrode in each of the first and second sub pixels, the first capacitor being located at a periphery of the corresponding first electrode; an emission layer disposed on the first electrode in each of the first and second sub pixels; and a second electrode disposed on the emission layer in each of the first and second sub pixels.
Abstract:
The present embodiments relate to a transparent display panel having an excellent transparency, light-emitting efficiency, and viewing angle, and a transparent display device including the same.
Abstract:
An organic light emitting display is provided. The organic light emitting display comprises a multi-type thin-film transistor (TFT) and an organic light emitting diode. The multi-type TFT has a low-temperature-poly-silicon (LTPS) TFT and an oxide semiconductor TFT (oxide TFT) disposed on the LTPS TFT. The organic light emitting diode is electrically connected to the multi-type TFT. The LTPS TFT and the oxide TFT are connected to the same gate line.