Abstract:
A display device and a method of manufacturing the same are disclosed, in which arcing may be prevented from occurring. The display device comprises a first substrate including a display area on which pixels are arranged, and a non-display area surrounding the display area; a dam surrounding the display area, arranged on the non-display area; a pad electrode arranged outside the dam; and an encapsulation film covering the display area and including a first inorganic film and a second inorganic film arranged on the first inorganic film, wherein the second inorganic film is overlapped with the pad electrode.
Abstract:
A display device includes a first substrate where a display area and a non-display are defined, wherein a plurality of pixels are arranged at the display area and the non-display area surrounds the display area; a dam surrounding the display area and arranged at the non-display area; an organic light emitting diode provided in the display area; an encapsulation film disposed on the organic light emitting diode; a buffer layer disposed on the encapsulation film; an insulating film disposed on the buffer layer; a pad area arranged outside the dam, wherein the buffer layer and the insulating film extend from the display area to the pad area; a link line disposed between the dam and the first substrate; and a routing line provided on the insulating layer between the display area and the pad area.
Abstract:
A display device and a method of manufacturing the same are disclosed, in which arcing may be prevented from occurring. The display device comprises a first substrate including a display area on which pixels are arranged, and a non-display area surrounding the display area; a dam surrounding the display area, arranged on the non-display area; a pad electrode arranged outside the dam; and an encapsulation film covering the display area and including a first inorganic film and a second inorganic film arranged on the first inorganic film, wherein the second inorganic film is overlapped with the pad electrode.
Abstract:
Disclosed is a display device that may, for example, include a gate line that is provided in a first direction on a backplane and delivers a gate signal; a data line that is provided in a second direction on the backplane and delivers a data signal; a Thin Film Transistor (TFT) in each pixel defined by a crossing between the gate line and the data line; a first electrode spaced apart from one of a source electrode and a drain electrode of the TFT; a second electrode that is provided on a layer different from that on which the first electrode is provided; a TFT passivation layer that is provided on the TFT and has a first contact hole; a first connection pattern that connects one of the source electrode and the drain electrode to the first electrode through the first contact hole; and a second connection pattern that delivers a touch driving signal to the second electrode and is formed of a material substantially identical to that of the first connection pattern.
Abstract:
Disclosed is a display device that may, for example, include a gate line that is provided in a first direction on a backplane and delivers a gate signal; a data line that is provided in a second direction on the backplane and delivers a data signal; a Thin Film Transistor (TFT) in each pixel defined by a crossing between the gate line and the data line; a first electrode spaced apart from one of a source electrode and a drain electrode of the TFT; a second electrode that is provided on a layer different from that on which the first electrode is provided; a TFT passivation layer that is provided on the TFT and has a first contact hole; a first connection pattern that connects one of the source electrode and the drain electrode to the first electrode through the first contact hole; and a second connection pattern that delivers a touch driving signal to the second electrode and is formed of a material substantially identical to that of the first connection pattern.
Abstract:
Disclosed is a display device integrated with a touch screen panel and a method for fabricating the same. The display includes: a TFT positioned at each pixel region; a first electrode spaced from one of a source electrode or a drain electrode of the TFT; a second electrode facing the first electrode; a TFT protective layer positioned on the TFT and has a first contact hole; a touch signal line positioned between a first touch connection pattern, which is made of the same material as the first electrode, and a second touch connection pattern made of the same material as the second electrode, and transfers a touch driving signal to the second touch connection pattern; a first connection pattern made of the same material as the second electrode; and a first electrode protective layer positioned on the first electrode and the touch signal line.
Abstract:
A display device includes a first substrate where a display area and a non-display are defined, wherein a plurality of pixels are arranged at the display area and the non-display area surrounds the display area; a dam surrounding the display area and arranged at the non-display area; an organic light emitting diode provided in the display area; an encapsulation film disposed on the organic light emitting diode; a buffer layer disposed on the encapsulation film; an insulating film disposed on the buffer layer; a pad area arranged outside the dam, wherein the buffer layer and the insulating film extend from the display area to the pad area; a link line disposed between the dam and the first substrate; and a routing line provided on the insulating layer between the display area and the pad area.
Abstract:
A display device and a method of manufacturing the same are disclosed, in which arcing may be prevented from occurring. The display device comprises a first substrate including a display area on which pixels are arranged, and a non-display area surrounding the display area; a dam surrounding the display area, arranged on the non-display area; a pad electrode arranged outside the dam; and an encapsulation film covering the display area and including a first inorganic film and a second inorganic film arranged on the first inorganic film, wherein the second inorganic film is overlapped with the pad electrode.
Abstract:
Disclosed is a display device with integrated touch screen, which can prevent a first touch electrode or a second touch electrode from being short-circuited with a bridge electrode through an opening. The display device includes first electrodes on a first substrate, a light emitting layer on the first electrodes, a second electrode on the light emitting layer, an encapsulation layer on the second electrode, a bridge electrode and a dummy electrode on the encapsulation layer, an insulation layer covering the bridge electrode and the dummy electrode, and a first touch electrode and a second touch electrode on the insulation layer. The first touch electrode is electrically connected to the bridge electrode, and bridge electrode is spaced apart from the dummy electrode.
Abstract:
Discussed are a display device and a multiscreen display device including the same, which conceal a bezel. The display device in one embodiment includes first to fourth edge display modules displaying an image on a bezel area overlapping each of first to fourth non-display areas of an image display module. The first to fourth edge display modules each include a flexible printed circuit board including a first cover part covering a corresponding non-display area, a second cover part bent from the first cover part and disposed on a side surface of the image display module, and a third cover part extending from the second cover part, a dot light source array including a plurality of dot light source devices provided in the first cover part, and a light source driving circuit unit provided in the third cover part and driving the dot light source devices to display an image on the bezel area.