Abstract:
Disclosed are a terminal device for controlling uplink transmission power and a method therefor. A receiving antenna receives uplink transmission mode change information from a base station. A processor determines a transmission power value to be used for the uplink transmission by means of an offset value corresponding to the uplink transmission mode change information. A transmitting antenna transmits an uplink signal with the determined transmission power value.
Abstract:
Method for generating reference signal sequence using grouping is explained. In this method, base sequences are grouped such that each group contains at least one base sequence of each length, so UE(s) can use various length sequences as a reference signal. And in this method, inter cell interference caused by using various length sequence as a reference signal sequence can be minimized by grouping sequences having the high cross correlation relation.
Abstract:
A method and apparatus for transmitting or detecting primary synchronization signal. The receiver receives primary synchronization signal from a transmitter, and detects the sequence used in the received primary synchronization signal by using three root indexes. Here, the primary synchronization signal is generated by using a Zadoff-Chu sequence having one of the three root indexes. The three root indexes comprise a first index and a second index, and a sum of the first index and the second index corresponds to the length of the Zadoff-Chu sequence.
Abstract:
A method and a user equipment for transmitting control information in a communication system are discussed. The method according to an embodiment includes multiplying a transmission information symbol s for the control information by a frequency direction sequence c(k) to generate a first output sequence s(k), where s(k)=s*c(k), k=0, . . . , Nk−1, and Nk corresponds to a number of subcarriers included in a resource block allocated for an uplink control channel; multiplying the first output sequence s(k) by a time direction sequence x(n) to generate a second output sequence s(k, n), where s(k, n)=s(k)*x(n), n=0, . . . , Nn−1, and Nn corresponds to a number of symbols used for transmission of the control information in a transmission time interval; and transmitting the second output sequence s(k, n) through the uplink control channel in the transmission time interval.
Abstract:
A method for transmitting, by a base station, signals in a communication system. The base station transmits, to a mobile station via a primary carrier band of the mobile station, carrier aggregation configuration information informing the mobile station of a subsidiary carrier band for the mobile station. The base station receives, from the mobile station, control information for the subsidiary carrier band via the primary carrier band. The carrier aggregation configuration information includes a physical identification of a frequency allocation band used as the subsidiary carrier band and a logical identification assigned to the subsidiary carrier band for the mobile station. The physical identification includes one of plural absolute frequency band indexes assigned to frequency allocation bands available in the communication system. The logical identification includes a logical index assigned to the subsidiary carrier band identifying the subsidiary carrier band from among a plurality of frequency allocation bands.
Abstract:
A method and device for transmitting a power headroom report (PHR) by a user equipment (UE) in a communication system supporting a plurality of carriers. The method includes transmitting, to an eNode B (eNB), a power headroom report (PHR) related to the plurality of carriers configured for the UE. The power headroom report (PHR) comprises a first type power headroom (PH) and a second type power headroom (PH). While the first type power headroom (PH) is calculated for a power headroom report (PHR) related to a primary carrier and a non-primary carrier, the second type power headroom (PH) is calculated for a power headroom report (PHR) related to only the primary carrier. The second type power headroom (PH) is calculated for case of simultaneous transmission of a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH).
Abstract:
A method and device are disclosed for transmitting uplink control signals in a wireless communication system using at least one subframe comprising two slots, each slot including a plurality of symbols, the wireless communication system configured to transmit a first uplink control signal via an assigned first physical uplink control channel resource and to transmit a second uplink control signal via an assigned second physical uplink control channel resource. The method can include generating a modulation symbol by modulating the second uplink control signal, and transmitting the modulation symbol in a subframe via a physical uplink control channel resource which is assigned for the first uplink control signal if it is determined that the first uplink control signal and the second uplink control signal are to be transmitted in the subframe.
Abstract:
A sequence generation method for allowing a reception end to effectively detect a sequence used for a specific channel of an OFDM communication system, and a signal transmission/reception method using the same are disclosed. During the sequence generation, an index is selected from among the index set having the conjugate symmetry property between indexes, and a specific part corresponding to the frequency “0” is omitted from a transmitted signal. In addition, a reception end can calculate a cross-correlation value between a received (Rx) signal and each sequence using only one cross-correlation calculation based on the conjugate symmetry property.
Abstract:
A method of transmitting a reference signal in a wireless communication system includes generating a frequency-domain reference signal by performing discrete Fourier transform (DFT) on a time-domain reference signal, generating a transmit signal by performing inverse fast Fourier transform (IFFT) on the frequency-domain reference signal and transmitting the transmit signal.
Abstract:
Method for generating reference signal sequence using grouping is explained. In this method, base sequences are grouped such that each group contains at least one base sequence of each length, so UE(s) can use various length sequences as a reference signal. And in this method, inter cell interference caused by using various length sequence as a reference signal sequence can be minimized by grouping sequences having the high cross correlation relation.