Abstract:
Disclosed is a broadcast signal transmitter. The broadcast signal transmitter includes a first bit interleaved coded modulation (BICM) unit configured to forward error correction (FEC)-encode data of a first layer, a second BICM unit configured to FEC-encode data of a second layer, a layered division multiplexing (LDM) injection unit configured to combine the data of the first layer and the data of the second layer and to output LDM data, a framing and interleaving unit configured to interleave the LDM data and to generate a signal frame, and a waveform generation unit configured to perform OFDM modulation on the LDM data and to generate a broadcast signal.
Abstract:
The present invention provides an apparatus of transmitting broadcast signals, the apparatus including, an encoder for encoding service data, a frame builder for building at least one signal frame by mapping the encoded service data, a modulator for modulating data in the built at least one signal frame by an Orthogonal Frequency Division Multiplexing, OFDM, scheme and a transmitter for transmitting the broadcast signals having the modulated data.
Abstract:
A method and an apparatus for transmitting broadcast signals thereof are disclosed. The apparatus for transmitting broadcast signals, the apparatus comprises an encoder for encoding service data corresponding to each of a plurality of data transmission path, wherein each of the data transmission path carries at least one service component for broadcast services, an encoder for encoding signaling data, wherein the signaling data includes static data and dynamic data, a frame builder for building signal frames, wherein each of signal frames includes the encoded service data and the encoded signaling data, wherein each of signal frames belongs to one of the broadcast services, wherein the static data remain constant in the signal frames belonging to the broadcast service in a duration of a super frame and the dynamic data changes by the signal frames, a modulator for modulating the signal frames by an OFDM (Orthogonal Frequency Division Multiplex) scheme and a transmitter for transmitting the broadcast signals carrying the modulated signal frames.
Abstract:
The present disclosure a method of transmitting data by user equipment (UE) in a wireless communication system, the method comprising: transmitting data applied a first transmission weight learned through an artificial neural network, to a base station, based on the UE performing data transmission, receiving NACK related to the data transmission from the base station, and retransmitting data applied a second transmission weight learned through the artificial neural network, to the base station, based on the UE performing retransmission of the data, wherein the first transmission weight and the second transmission weight are learned based on an incremental weight (IW) scheme, and wherein the second transmission weight is an additional weight that is learned by the artificial neural network based on the IW scheme with the first transmission weight being fixed.
Abstract:
A method of operating a terminal and a base station in a wireless communication system and apparatus supporting them are disclosed. A method of operating a first apparatus in a wireless communication system comprises transmitting a pilot signal to a second apparatus, determining at least one coding rate and modulation order based on channel information generated based on the pilot signal, channel-coding a transport block according to the at least one coding rate and modulation order, and transmitting at least one modulation symbol generated based on a second part of the transport block to the second apparatus through a transmit antenna combination determined based on a first part of the channel-coded transport block.
Abstract:
A method for encoding a quasi-cyclic low-density parity-check (LDPC) code according to an embodiment of the present invention may comprise the steps of: generating a multi-edge LDPC code matrix including a high rate code matrix and a single parity check code matrix; and encoding a signal by using the multi-edge LDPC code matrix, wherein the single parity check code matrix includes a first matrix having a non-row-orthogonal structure matrix and a second matrix having a pure row-orthogonal structure, which are concatenated.
Abstract:
A method for performing encoding on the basis of a parity check matrix of a low density parity check code according to the present embodiment comprises the steps of: generating a parity check matrix by a terminal, wherein the parity check matrix corresponds to a characteristic matrix, each component of the characteristic matrix corresponds to a shift index value determined through a modulo operation between a corresponding component in a basic matrix and Zc, which is a lifting value, and the basic matrix is a 42×52 matrix; and performing encoding of input data, by the terminal, using the parity check matrix, wherein the lifting value is associated with the length of the input data.
Abstract:
Disclosed are a method for dividing a carrying block of a Low Density Parity Check (LDPC) code and an apparatus therefor. The method for dividing a LDPC code of the present disclosure can obtain a high throughput by using a limited size of shifting network. Moreover, it is possible to prevent degradation in performance due to a minimum size of code block by performing shortening for a large size of code block while minimizing the number of code blocks. Furthermore, in selection of a minimum size of code block, since a minimum size of code block is selected on the basis of shortening for a relatively large size of code block, it is possible to increase the size of the minimum size of code block.
Abstract:
A method for receiving broadcast signals, includes receiving the broadcast signals, demodulating the received broadcast signals by an Orthogonal Frequency Division Multiplex (OFDM) scheme, parsing a signal frame from the demodulated broadcast signals, and bit deinterleaving data in the parsed signal frame, wherein the bit deinterleaving includes block deinterleaving the data with each set of a number of bit groups. The number of bit groups is based on modulation type. When the modulation type is Quadrature Phase Shift Keying (QPSK), the number of bit groups is 2. When the modulation type is 16 Quadrature Amplitude Modulation (QAM), the number of bit groups is 4. When the modulation type is 64 Quadrature Amplitude Modulation (QAM), the number of bit groups is 6. When the modulation type is 256 QAM, the number of bit groups is 8. When the modulation type is 1024 QAM, the number of bit groups is 10.
Abstract:
The present invention provides an apparatus of transmitting broadcast signals. The apparatus includes, an encoder for encoding service data, a bit interleaver for bit interleaving the encoded service data, a mapper for mapping the bit interleaved service data into a plurality of OFDM (Orthogonal Frequency Division Multiplex) symbols to build at least one signal frame, an OFDM modulator for modulating data in the built at least one signal frame by an OFDM scheme and a transmitter for transmitting the broadcast signals having the modulated data.