Abstract:
An air conditioner includes a compressor, an outdoor heat exchanger, an indoor heat exchanger, a converting unit, an accumulator, and injection module, a supercooling valve, and an injection valve. The injection module expands and vaporizes a portion of refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger in the heating operation. The supercooling valve is disposed between the injection module and the accumulator and is opened to direct the portion of the refrigerant vaporized in the injection module to the accumulator in the heating operation and then closed after a predetermined time passes. The injection valve is disposed between the injection module and the compressor and is opened when the supercooling valve is closed in the heating operation, thereby injecting the portion of the refrigerant vaporized in the injection module to the compressor.
Abstract:
A refrigerant regenerating apparatus is disclosed. A refrigerant regenerating apparatus of the present disclosure includes: a regenerator into which a refrigerant flows and from which the refrigerant is discharged, the regenerator configured to separate and discharge oil contained in a refrigerant flowing in the regenerator; and a recoverer into which the refrigerant discharged from the regenerator flows, the recoverer including a compressor configured to compress a refrigerant flowing in the recoverer and a heat exchanger configured to condense a refrigerant discharged from the compressor, in which the regenerator includes: a charger configured to charge oil contained in the refrigerant flowing in the regenerator with positive ions or negative ions using corona discharge; and a collector configured to electrically collect the oil charged through the charger.
Abstract:
The present invention relates to a heat exchanger. The heat exchanger according to the present invention includes: an outer pipe; a first sub heat exchange part and a second sub heat exchange part which are disposed inside the outer pipe, and in which a second fluid flows around a first fluid pipe through which a first fluid flows; and a main heat exchange part which is disposed, inside the outer pipe, between the first sub heat exchange part and the second sub heat exchange part, and in which the first fluid flows around a plurality of narrow pipes through which the second fluid flows.
Abstract:
A micro channel type heat exchanger in which a first heat exchange module and a second heat exchange module are stacked, the micro channel type heat exchanger including a plurality of flat tubes disposed within the first heat exchange module and the second heat exchange module, and a heat blocking member configured to form a heat blocking space by separating the first heat exchange module and the second heat exchange module, wherein the heat blocking member forms a heat blocking space between the first heat exchange module and the second heat exchange module that minimizes heat conductivity and improves thermal exchange performance of the heat exchanger.
Abstract:
A micro channel type heat exchanger having a first pass disposed in some flat tubes located in a first heat exchange module and along which a refrigerant flows in one direction, a second pass disposed in some of the remaining flat tubes located in the first heat exchange module and along which the refrigerant supplied from the first pass flows in an opposite direction to that of the first pass, a third pass distributed and located in the remainder of flat tubes located in the first heat exchange module other than the first pass and the second pass and in some flat tubes located in a second heat exchange module, and a fourth pass disposed in the remainder of the flat tubes located in the second heat exchange module and along which a refrigerant supplied from the third pass flows in an opposite direction to a direction of the third pass.
Abstract:
Provided are a supercooler and an air conditioner including the same. The supercooler disposed between a condenser and an evaporator of an air conditioner to supercool a refrigerant condensed in the condenser, thereby allowing the supercooled refrigerant to flow into the evaporator includes an inner tube in which a first refrigerant passing through the condenser flows, an outer tube having an inner space in which the inner tube is disposed, the outer tube allowing a second refrigerant heat-exchanged with the first refrigerant to flow by using the inner tube as a boundary, and a baffle supporting the inner tube to prevent the inner tube from being shaken within the outer tube.
Abstract:
Provided are a supercooler and an air conditioner including the same. The supercooler disposed between a condenser and an evaporator of an air conditioner to supercool a refrigerant condensed in the condenser, thereby allowing the supercooled refrigerant to flow into the evaporator includes an inner tube in which a first refrigerant passing through the condenser flows, an outer tube having an inner space in which the inner tube is disposed, the outer tube allowing a second refrigerant heat-exchanged with the first refrigerant to flow by using the inner tube as a boundary, and a baffle supporting the inner tube to prevent the inner tube from being shaken within the outer tube.
Abstract:
An air conditioner is provided. The air conditioner includes a compressor having a suction unit and a plurality of injection inlets, an inside heat exchanger into which refrigerant compressed in the compressor is introduced during a heating operation, an outside heat exchanger into which refrigerant compressed in the compressor is introduced during a cooling operation, a plurality of refrigerant separation devices through which refrigerant condensed in the inside heat exchanger or the outside heat exchanger pass, a plurality of injection flow paths which extends from the three refrigerant separation devices to the plurality of injection inlets, and a bypass flow path which extends from any one injection flow path among the plurality of injection flow paths to the suction unit of the compressor.
Abstract:
An air conditioner includes a compressor, an outdoor heat exchanger, an indoor heat exchanger, a converting unit, an accumulator, and injection module, a supercooling valve, and an injection valve. The injection module expands and vaporizes a portion of refrigerant flowing from the indoor heat exchanger to the outdoor heat exchanger in the heating operation. The supercooling valve is disposed between the injection module and the accumulator and is opened to direct the portion of the refrigerant vaporized in the injection module to the accumulator in the heating operation and then closed after a predetermined time passes. The injection valve is disposed between the injection module and the compressor and is opened when the supercooling valve is closed in the heating operation, thereby injecting the portion of the refrigerant vaporized in the injection module to the compressor.
Abstract:
A scroll compressor and an air conditioner including a scroll compressor are provided. The scroll compressor may include a casing, a fixed scroll, an orbiting scroll, and an injection passage. The fixed scroll may further include a first injection hole and a second injection hole formed on a spiral flow passage, and a third injection hole and a fourth injection hole formed on the spiral flow passage at a position inwardly rotated by about 360 degrees from the first injection hole and the second injection hole along the spiral flow passage. The first injection hole and the third injection hole may be formed on an outer lane of the spiral flow passage, and the second injection hole and the fourth injection hole may be formed on an inner lane of the spiral flow passage.