Abstract:
Methods and systems for accurate gain adjustment of a transimpedance amplifier using a dual replica and servo loop is disclosed and may include, in a transimpedance amplifier (TIA) circuit comprising a first TIA, a second TIA, and a third TIA, each comprising a configurable feedback impedance, and a control loop, where the control loop comprises a gain stage with inputs coupled to outputs of the first and second TIAs and an output coupled to the configurable feedback impedance of the second and third TIAs: configuring a gain level of the first TIA by configuring its feedback impedance, configuring a gain level of the third TIA by configuring a reference current applied to an input of the first TIA, and amplifying a received electrical signal to generate an output voltage utilizing the third TIA. The reference current may generate a reference voltage at one of the inputs of the gain stage.
Abstract:
Methods and systems for an optical connection service interface may include, in an optical data link comprising an optical fiber coupling first and second transceivers, generating a signal for the transceivers at a low frequency, and communicating, utilizing the optical fiber, an optical data signal at a high frequency and an Optical Connection Service interface (OCSi) signal at an intermediate frequency. An optical signal may be modulated at the intermediate frequencies for the OCSi, and may be modulated and communicated to the second transceiver. The communicated modulated signal and the optical data signal may be detected utilizing a photodetector in the second transceiver. The detected optical signal may be demodulated, and an optical power of the optical data signal may be configured based on the demodulated signal.
Abstract:
Methods and systems for waveguide delay based equalization summing at single-ended to differential converters in optical communication are disclosed and may include: in an optoelectronic receiver including a directional coupler, photodetectors, transimpedance amplifiers (TIAs), and a gain stage, receiving an input optical signal; splitting the input optical signal into first and second optical signals using the directional coupler; generating a first current from the first optical signal using a first photodetector; generating a first voltage from the first current using a first TIA; communicating the first voltage to a first input of the gain stage; generating a second current from the second optical signal using a second photodetector; generating a second voltage from the first signal using a second TIA; communicating the second voltage to a second input of the gain stage; and generating a differential output voltage from the first and second voltages using the gain stage.
Abstract:
Methods and systems for an optoelectronic built-in self-test (BIST) system for silicon photonics optical transceivers are disclosed and may include, in an optoelectronic transceiver having a transmit (Tx) path and a receive (Rx) path, where the Rx path includes a main Rx path and a BIST loopback path: generating a pseudo-random bit sequence (PRBS) signal, generating an optical signal in the Tx path by applying the PRBS signal to a modulator, communicating the optical signal to the BIST loopback path and converting to an electrical signal utilizing a photodetector, the photodetector being a replica of a photodetector in the main Rx path, and assessing the performance of the Tx and Rx paths by extracting a PRBS signal from the electrical signal. The transceiver may be a single complementary-metal oxide semiconductor (CMOS) die or in two CMOS die, where a first comprises electronic devices and a second comprises optical devices.
Abstract:
Methods and systems for an optical connection service interface may include, in an optical data link comprising an optical fiber, a local control system, first and second transceivers at ends of the optical fiber, generating a signal for the local control system at a low frequency and communicating, utilizing the optical fiber, an optical data signal at a high frequency and an Optical Connection Service interface (OCSi) signal at an intermediate frequency. An optical signal may be modulated at the intermediate frequencies for the OCSi, and may be modulated and communicated to the second transceiver. The communicated modulated signal and the optical data signal may be detected utilizing a photodetector in the second transceiver. The detected optical signal may be demodulated, and an optical power of the optical data signal may be configured based on the demodulated signal.
Abstract:
Methods and systems for waveguide delay based equalization with current and optical summing in optical communication are disclosed and may include an optoelectronic receiver including a directional coupler, two or more photodiodes, and one or more current mirrors. The optoelectronic receiver may be operable to: receive an input optical signal; split the input optical signal into first and second optical signals using the directional coupler; generate a first electrical from the first optical signal using a first photodiode; generate a second electrical signal from the second optical signal using a second photodiode; amplify the second electrical signal using the current mirror; and sum the first electrical signal with the amplified second electrical signal. The optoelectronic receiver may be operable to delay the first optical signal before generating the first electrical signal, using a waveguide delay.
Abstract:
Methods and systems for waveguide delay based equalization with current and optical summing in optical communication are disclosed and may include an optoelectronic receiver including a directional coupler, two or more photodetectors, and one or more current mirrors. The optoelectronic receiver may be operable to: receive an input optical signal; split the input optical signal into first and second optical signals using the directional coupler; generate a first electrical from the first optical signal using a first photodetector; generate a second electrical signal from the second optical signal using a second photodetector; mirror the second electrical signal using the current mirror; and sum the first electrical signal with the amplified second electrical signal. The optoelectronic receiver may be operable to delay the first optical signal before generating the first electrical signal, using a waveguide delay.
Abstract:
Methods and systems for an optical connection service interface may include, in an optical data link comprising an optical fiber, a local control system, first and second transceivers at ends of the optical fiber, generating a signal for the local control system at a low frequency and communicating, utilizing the optical fiber, an optical data signal at a high frequency and an Optical Connection Service interface (OCSi) signal at an intermediate frequency. An optical signal may be modulated at the intermediate frequencies for the OCSi, and may be modulated and communicated to the second transceiver. The communicated modulated signal and the optical data signal may be detected utilizing a photodetector in the second transceiver. The detected optical signal may be demodulated, and an optical power of the optical data signal may be configured based on the demodulated signal.
Abstract:
Methods and systems for waveguide delay based equalization with current and optical summing in optical communication are disclosed and may include an optoelectronic receiver including a directional coupler, two or more photodiodes, and one or more current mirrors. The optoelectronic receiver may be operable to: receive an input optical signal; split the input optical signal into first and second optical signals using the directional coupler; generate a first electrical from the first optical signal using a first photodiode; generate a second electrical signal from the second optical signal using a second photodiode; amplify the second electrical signal using the current mirror; and sum the first electrical signal with the amplified second electrical signal. The optoelectronic receiver may be operable to delay the first optical signal before generating the first electrical signal, using a waveguide delay.
Abstract:
Methods and systems for an optical connection service interface may include, in an optical data link comprising an optical fiber, a local control system, first and second transceivers at ends of the optical fiber, generating a control signal for the local control system at a low frequency and communicating, utilizing the optical fiber, an optical data signal at a high frequency and an optical service signal for an Optical Connection Service interface (OCSi) at an intermediate frequency. An optical signal may be modulated at the intermediate frequencies for the OCSi, and may be modulated and communicated to the second transceiver. The communicated modulated signal and the optical data signal may be detected utilizing a photodetector in the second transceiver. The detected optical signal may be demodulated, and an optical power of the optical data signal may be configured based on the demodulated signal.