Abstract:
An improved method for color transient enhancement in an input video frame of pixels. The luminance value of a current pixel is compared to that of neighboring pixels. A correction value is determined and the chrominance value of the current pixel is “pushed” towards the neighboring pixel that has a luminance value closest to that of the current pixel, by adding the correction value to the current pixel's chrominance value. The original video frame is also separately processed using a CTI method, and the current pixel's corrected chrominance value is combined with the corresponding pixel in the output of the CTI processing by soft switching unit to generate an output video frame that is an enhanced version of the input video frame.
Abstract:
A superior Color Transient Improvement technique is adaptive to the local image features, so that more natural color edge transition improvement can be accomplished. A gain control function is provided that depends on the local image feature so that different regions of the image can be treated differently. Further, a correction signal is controlled in such a way (by the local image feature) that neither undershoot nor overshoot occurs, eliminating the need for post-processing for undershoot/overshoot removal.
Abstract:
A noise reduction system that not only preserves details in images but also provides essentially clean, smooth, and natural looking homogeneous regions in images. The noise reduction system utilizes a dual-channel adaptive noise reduction technique. The input signal is first split into two channels (i.e., a low-pass channel and a high-pass channel), by a channel splitting filter. Then the two channel signals are processed separately. The low-pass channel signal is processed using an adaptive directional filter based on the estimation of the local 2D and 1D statistics and the detection of the local image structure direction. The high-pass channel signal is processed by a non-linear filtering method based on the estimation of the local statistics and the noise level of the high-pass channel signal, which is derived from the noise level of the original input signal. The processed signals from the two channels are summed together to get the final output.
Abstract:
Electronic devices may include image sensors and processing circuitry. Image sensors may be used to capture multiple exposure images. Processing circuitry may be used to combine multiple exposure images into high-dynamic-range images. A motion correction method is provided that detects motion between multiple exposure images without using a frame buffer. A noise model is used to separate noise from motion for more accurate motion detection. A dilation operator may be used to enlarge a motion mask generated by the motion detector. Motion-corrected images may be generated from the multiple exposure images using a soft switch based on the motion strength. Motion-corrected multiple exposure images may be combined to generate a motion-corrected HDR image. A smoothing filter may be applied to the motion region of the motion-corrected HDR image. A blooming correction may be used to eliminate color artifacts in the motion-corrected HDR image.
Abstract:
Electronic devices may include camera modules. A camera module may be formed from an array of lenses and corresponding image sensors. The array of image sensors may include three color image sensors for color imaging and a fourth image sensor positioned to improve image depth mapping. Providing a camera module with a fourth image sensor may increase the baseline distance between the two most distant image sensors, allowing parallax and depth information to be determined for objects a greater distance from the camera than in a conventional electronic device. The fourth image sensor may be a second green image sensor positioned at a maximal distance from the green color image sensor used for color imaging. The fourth image sensor may also be a clear image sensor, allowing capture of improved image depth information and enhanced image resolution and low-light performance.
Abstract:
Electronic devices may include camera modules. A camera module may include an array camera having an array of lenses and an array of corresponding image sensors. Parallax correction and depth mapping methods may be provided for array cameras. A parallax correction method may include a global and a local parallax correction. A global parallax correction may be determined based on one-dimensional horizontal and vertical projections of edge images. Local parallax corrections may be determined using a block matching procedure. Further improvements to local parallax corrections may be generated using a relative block color saturation test, a smoothing of parallax correction vectors and, if desired, using a cross-check between parallax correction vectors determined for multiple image sensors. Three dimensional depth maps may be generated based on parallax correction vectors.
Abstract:
Electronic devices may include camera modules. A camera module may be formed from an array of lenses and corresponding image sensors. The array of image sensors may include three color image sensors for color imaging and a fourth image sensor positioned to improve image depth mapping. Providing a camera module with a fourth image sensor may increase the baseline distance between the two most distant image sensors, allowing parallax and depth information to be determined for objects a greater distance from the camera than in a conventional electronic device. The fourth image sensor may be a second green image sensor positioned at a maximal distance from the green color image sensor used for color imaging. The fourth image sensor may also be a clear image sensor, allowing capture of improved image depth information and enhanced image resolution and low-light performance.
Abstract:
A video quality adaptive coding artifact reduction system has a video quality analyzer, an artifact reducer, and a filter strength controller. The video quality analyzer employs input video quality analysis to control artifact reduction. The video quality analyzer accesses the video quality of the decoded video sequence to estimate the input video quality. The filter strength controller globally controls the filter strength of the artifact reducer based on the video quality estimate by the video quality analyzer. For low quality input video, the filter strength controller increases the artifact reduction filter strength to more efficiently reduce the artifact. For high quality input video, the filter strength controller decreases the artifact reduction filter strength to avoid blurring image detail.
Abstract:
A multimedia data coding method for cell phones is provided, wherein the multimedia data coding method comprises steps as follows: First multimedia data is captured by a first cell phone, and then a coding parameter is determined by selecting a coding mode. Subsequently the multimedia data is coded according to the coding mode and the coding parameter to output a signal. The signal is then transmitted to a second cell phone.