摘要:
The present symmetric stereo matching technique provides a method for iteratively estimating a minimum energy for occlusion and disparity using belief propagation. The minimum energy is based on an energy minimization framework in which a visibility constraint is embedded. By embedding the visibility constraint, the present symmetric stereo matching technique treats both images equally, instead of treating one as a reference image. The visibility constraint ensures that occlusion in one view and the disparity in another view are consistent.
摘要:
A system and process for determining the vignetting function of an image and using the function to correct for the vignetting is presented. The image can be any arbitrary image and no other images are required. The system and process is designed to handle both textured and untextured segments in order to maximize the use of available information. To extract vignetting information from an image, segmentation techniques are employed that locate image segments with reliable data for vignetting estimation. Within each image segment, the system and process capitalizes on frequency characteristics and physical properties of vignetting to distinguish it from other sources of intensity variation. The vignetting data acquired from segments are weighted according to a presented reliability measure to promote robustness in estimation.
摘要:
A system and process for compressing and decompressing multiple video streams depicting substantially the same dynamic scene from different viewpoints that from a grid of viewpoints. Each frame in each contemporaneous set of video frames of the multiple streams is represented by at least a two layers—a main layer and a boundary layer. Compression of the main layers involves first designating one or more of these layers in each set of contemporaneous frames as keyframes. For each set of contemporaneous frames in time sequence order, the main layer of each keyframe is compressed using an inter-frame compression technique. In addition, the main layer of each non-keyframe within the frame set under consideration is compressed using a spatial prediction compression technique. Finally, the boundary layers of each frame in the current frame set are each compressed using an intra-frame compression technique. Decompression is generally the reverse of the compression process.
摘要:
A system and process for generating, and then rendering and displaying, an interactive viewpoint video in which a user can watch a dynamic scene while manipulating (freezing, slowing down, or reversing) time and changing the viewpoint at will. In general, the interactive viewpoint video is generated using a small number of cameras to capture multiple video streams. A multi-view 3D reconstruction and matting technique is employed to create a layered representation of the video frames that enables both efficient compression and interactive playback of the captured dynamic scene, while at the same time allowing for real-time rendering.
摘要:
A system and process for generating a two-layer, 3D representation of a digital or digitized image from the image and a pixel disparity map of the image is presented. The two layer representation includes a main layer having pixels exhibiting background colors and background disparities associated with correspondingly located pixels of depth discontinuity areas in the image, as well as pixels exhibiting colors and disparities associated with correspondingly located pixels of the image not found in these depth discontinuity areas. The other layer is a boundary layer made up of pixels exhibiting foreground colors, foreground disparities and alpha values associated with the correspondingly located pixels of the depth discontinuity areas. The depth discontinuity areas correspond to prescribed sized areas surrounding depth discontinuities found in the image using a disparity map thereof.
摘要:
A process for compressing and decompressing non-keyframes in sequential sets of contemporaneous video frames making up multiple video streams where the video frames in a set depict substantially the same scene from different viewpoints. Each set of contemporaneous video frames has a plurality frames designated as keyframes with the remaining being non-keyframes. In one embodiment, the non-keyframes are compressed using a multi-directional spatial prediction technique. In another embodiment, the non-keyframes of each set of contemporaneous video frames are compressed using a combined chaining and spatial prediction compression technique. The spatial prediction compression technique employed can be a single direction technique where just one reference frame, and so one chain, is used to predict each non-keyframe, or it can be a multi-directional technique where two or more reference frames, and so chains, are used to predict each non-keyframe.
摘要:
A system and process for computing a 3D reconstruction of a scene from multiple images thereof, which is based on a color segmentation-based approach, is presented. First, each image is independently segmented. Second, an initial disparity space distribution (DSD) is computed for each segment, using the assumption that all pixels within a segment have the same disparity. Next, each segment's DSD is refined using neighboring segments and its projection into other images. The assumption that each segment has a single disparity is then relaxed during a disparity smoothing stage. The result is a disparity map for each image, which in turn can be used to compute a per pixel depth map if the reconstruction application calls for it.
摘要:
A system and process for rendering and displaying an interactive viewpoint video is presented in which a user can watch a dynamic scene while manipulating (freezing, slowing down, or reversing) time and changing the viewpoint at will. The ability to interactively control viewpoint while watching a video is an exciting new application for image-based rendering. Because any intermediate view can be synthesized at any time, with the potential for space-time manipulation, this type of video has been dubbed interactive viewpoint video.
摘要:
A system and process for generating a high dynamic range (HDR) image from a bracketed image sequence, even in the presence of scene or camera motion, is presented. This is accomplished by first selecting one of the images as a reference image. Then, each non-reference image is registered with another one of the images, including the reference image, which exhibits an exposure that is both closer to that of the reference image than the image under consideration and closest among the other images to the exposure of the image under consideration, to generate a flow field. The flow fields generated for the non-reference images not already registered with the reference image are concatenated to register each of them with the reference image. Each non-reference image is then warped using its associated flow field. The reference image and the warped images are combined to create a radiance map representing the HDR image.
摘要:
A system and process for compressing and decompressing multiple video streams depicting substantially the same dynamic scene from different viewpoints. Each frame in each contemporaneous set of video frames of the multiple streams is represented by at least a two layers—a main layer and a boundary layer. Compression of the main layers involves first designating one or more of these layers in each set of contemporaneous frames as keyframes. For each set of contemporaneous frames in time sequence order, the main layer of each keyframe is compressed using an inter-frame compression technique. In addition, the main layer of each non-keyframe within the frame set under consideration is compressed using a spatial prediction compression technique. Finally, the boundary layers of each frame in the current frame set are each compressed using an intra-frame compression technique. Decompression is generally the reverse of the compression process.