摘要:
A location history is a collection of locations over time for an object. A stay is a single instance of an object spending some time in one place, and a destination is any place where one or more objects have experienced a stay. Location histories are parsed using stays and destinations. In a described implementation, each location of a location history is recorded as a spatial position and a corresponding time at which the spatial position is acquired. Stays are extracted from a location history by analyzing locations thereof with regard to a temporal threshold and a spatial threshold. Specifically, two or more locations are considered a stay if they exceed a minimum stay duration and are within a maximum roaming distance. Each stay includes a location, a starting time, and an ending time. Destinations are produced from the extracted stays using a clustering operation and a predetermined scaling factor.
摘要:
A technique for image compositing which allows a user to select the best image of an object, such as for example a person, from a set of images interactively and see how it will be assembled into a final photomontage. A user can select a source image from the set of images as an initial composite image. A region, representing a set of pixels to be replaced, is chosen by the user in the composite image. A corresponding same region is reflected in one or more source images, one of which will be selected by the user for painting into the composite image. The technique optimizes the selection of pixels around the user-chosen region or regions for cut points that will be least likely to show seams where the source images are merged in the composite image.
摘要:
A system and process for generating High Dynamic Range (HDR) video is presented which involves first capturing a video image sequence while varying the exposure so as to alternate between frames having a shorter and longer exposure. The exposure for each frame is set prior to it being captured as a function of the pixel brightness distribution in preceding frames. Next, for each frame of the video, the corresponding pixels between the frame under consideration and both preceding and subsequent frames are identified. For each corresponding pixel set, at least one pixel is identified as representing a trustworthy pixel. The pixel color information associated with the trustworthy pixels is then employed to compute a radiance value for each pixel set to form a radiance map. A tone mapping procedure can then be performed to convert the radiance map into an 8-bit representation of the HDR frame.
摘要:
A system and process for generating a panoramic video. Essentially, the panoramic video is created by first acquiring multiple videos of the scene being depicted. Preferably, these videos collectively depict a full 360 degree view of the surrounding scene and are captured using a multiple camera rig. The acquisition phase also includes a calibration procedure that provides information about the camera rig used to capture the videos that is used in the next phase for creating the panoramic video. This next phase, which is referred to as the authoring phase, involves mosaicing or stitching individual frames of the videos, which were captured at approximately the same moment in time, to form each frame of the panoramic video. A series of texture maps are then constructed for each frame of the panoramic video. Each texture map coincides with a portion of a prescribed environment model of the scene. The texture map representations of each frame of the panoramic video are encoded so as to facilitate their transfer and viewing. This can include compressing the panoramic video frames. Such a procedure is useful in applications where the panoramic video is to be transferred over a network, such as the Internet.
摘要:
Multi-spline image blending technique embodiments are presented which generally employ a separate low-resolution offset field for every image region being blended, rather than a single (piecewise smooth) offset field for all the regions to produce a visually consistent blended image. Each of the individual offset fields is smoothly varying, and so is represented using a low-dimensional spline. A resulting linear system can be rapidly solved because it involves many fewer variables than the number of pixels being blended.
摘要:
A process for compressing and decompressing non-keyframes in sequential sets of contemporaneous video frames making up multiple video streams where the video frames in a set depict substantially the same scene from different viewpoints. Each set of contemporaneous video frames has a plurality frames designated as keyframes with the remaining being non-keyframes. In one embodiment, the non-keyframes are compressed using a multi-directional spatial prediction technique. In another embodiment, the non-keyframes of each set of contemporaneous video frames are compressed using a combined chaining and spatial prediction compression technique. The spatial prediction compression technique employed can be a single direction technique where just one reference frame, and so one chain, is used to predict each non-keyframe, or it can be a multi-directional technique where two or more reference frames, and so chains, are used to predict each non-keyframe.
摘要:
A “Joint Bilateral Upsampler” uses a high-resolution input signal to guide the interpolation of a low-resolution solution set (derived from a downsampled version of the input signal) from low-to high-resolution. The resulting high-resolution solution set is then saved or applied to the original input signal to produce a high-resolution output signal. The high-resolution solution set is close to what would be produced directly from the input signal without downsampling. However, since the high-resolution solution set is constructed in part from a downsampled version of the input signal, it is computed using significantly less computational overhead and memory than a solution set computed directly from a high-resolution signal. Consequently, the Joint Bilateral Upsampler is advantageous for use in near real-time operations, in applications where user wait times are important, and in systems where computational costs and available memory are limited.
摘要:
An automatic digital image grouping system and method for automatically generating groupings of related images based on criteria that includes image metadata and spatial information. The system and method takes an unordered and unorganized set of digital images and organizes and groups related images into image subsets. The criteria for defining an image subset varies and can be customized depending on the needs of the user. Metadata (such as EXIF tags) already embedded inside the images is used to extract likely image subsets. This metadata may include the temporal proximity of images, focal length, color overlap, and geographical location. The first component of the automatic image grouping system and method is a subset image stage that analyzes the metadata and generates potential image subsets containing related images. The second component is an overlap detection stage, where potential image subset is analyzed and verified by examining pixels of the related images.
摘要:
A system and process for generating a two-layer, 3D representation of a digital or digitized image from the image and a pixel disparity map of the image is presented. The two layer representation includes a main layer having pixels exhibiting background colors and background disparities associated with correspondingly located pixels of depth discontinuity areas in the image, as well as pixels exhibiting colors and disparities associated with correspondingly located pixels of the image not found in these depth discontinuity areas. The other layer is a boundary layer made up of pixels exhibiting foreground colors, foreground disparities and alpha values associated with the correspondingly located pixels of the depth discontinuity areas. The depth discontinuity areas correspond to prescribed sized areas surrounding depth discontinuities found in the image using a disparity map thereof.
摘要:
A system and process for providing an interactive video tour of a tour site to a user is presented. In general, the system and process provides an image-based rendering system that enables users to explore remote real world locations, such as a house or a garden. The present approach is based directly on filming an environment, and then using image-based rendering techniques to replay the tour in an interactive manner. As such, the resulting experience is referred to as Interactive Video Tours. The experience is interactive in that the user can move freely along a path, choose between different directions of motion at branch points in the path, and look around in any direction. The user experience is additionally enhanced with multimedia elements such as overview maps, video textures, and sound.