摘要:
A method is provided for processing minimum coded units (MCUs) in a Joint Photographic Expert Group (JPEG) bit stream representing an image. A data structure is generated for storing MCU block numbers, corresponding MCU block coordinates, and corresponding MCU block editing lists. When an editing operation to the image is received, the editing operation is saved to a group of the MCU block editing lists of a group of the MCUs affected by the editing operation. Later the MCUs are retrieved from the JPEG bit stream one at a time and then processed according to the editing operations in the corresponding MCU blocking editing lists.
摘要:
A method for correcting a radial distortion in an image includes receiving a radial distortion parameter from the user and calculating new intensity values of points in the image to correct a radial exposure distortion in the image.
摘要:
Methods of producing arginine bicarbonate solutions in very high concentrations including reacting an arginine slurry containing a first portion of arginine with a source of carbon dioxide gas at elevated pressure and temperature, adding subsequent portions of arginine to the resulting solution and further reacting with compressed carbon dioxide until a final solution containing in excess of 50% by weight are provided which include preparing an arginine solution by subjecting an arginine water slurry to elevated pressure and temperature and reacting the arginine solution with a source of carbon dioxide gas to form a solution comprising arginine and bicarbonate anion and recovering arginine bicarbonate from the solution.
摘要:
A method of producing arginine bicarbonate is provided including reacting an arginine slurry with a source of carbon dioxide gas under elevated temperature and low pressure to form a solution of at least 50% arginine bicarbonate, and recovering arginine bicarbonate from the solution.
摘要:
A method and apparatus for correcting for vignetting include associating each pixel in the two-dimensional array with a pair of polar coordinates referenced to a preselected origin pixel and partitioning the two-dimensional array of image pixels into a plurality of sectors. For each sector, the method includes computing an average R value, an average G value and an average B value; converting the average R value, the average G value and the average B value for each sector to logarithm space; comparing color gradients along a radial sector line to a gradient threshold; selecting gradients that do not exceed the threshold; using the selected gradients, estimating parameters of a model of a lens which produced the image; and, using the parameters, updating the model of the lens and correcting the image.
摘要:
A mechanical energy harvesting toothbrush may employ circuits and devices to convert mechanical energy into electrical energy. Such conversion can be done using piezoelectric devices to convert stresses and strains from bending of the toothbrush head and/or bristles during use, and can be done using electromagnetic generators involving passing a magnet through a coil to induce current. The resulting electric energy may be rectified, and stored in a storage device, such as a capacitor or rechargeable battery. A switching circuit may be configured to detect the level of energy stored in the storage device, and to close an electrical connection when a predetermined level of energy (e.g., a charge) has been reached. The predetermined level may correspond to a desired amount of brushing. The closing of the electrical connection may be used to power output devices when that desired amount of brushing has been reached.
摘要:
Optical position input systems and methods determine positions of at least one pointing objects within an active touch area. At least three imager modules form images of at least one pointing objects within the active touch area. A processor computes a position of each of the at least one pointing object based upon the images formed by the at least three imager modules.
摘要:
A mechanical energy harvesting toothbrush may employ circuits and devices to convert mechanical energy into electrical energy. Such conversion can be done using piezoelectric devices to convert stresses and strains from bending of the toothbrush head and/or bristles during use, and can be done using electromagnetic generators involving passing a magnet through a coil to induce current. The resulting electric energy may be rectified, and stored in a storage device, such as a capacitor or rechargeable battery. A switching circuit may be configured to detect the level of energy stored in the storage device, and to close an electrical connection when a predetermined level of energy (e.g., a charge) has been reached. The predetermined level may correspond to a desired amount of brushing (e.g., taking into account stroke length and force, and the number of strokes), and the closing of the electrical connection may be used to power output devices when that desired amount of brushing has been reached.