Abstract:
A system and method of authenticating a communication network comprising a first computing device, a second computing device and an intermediary computing device, wherein there is a first path between the first computing device and the intermediary computing device and a second path between the second computing device and the intermediary computing device. The method is executed at the intermediary computing device, and comprises receiving, from the first computing device, a first session key generated by the first computing device using a function, wherein an input to the function comprises an incremented variable; receiving, from the second computing device, data associated with a second session key generated by the second computing device using the function; determining that the first session key and the second session key are the same; and defining the communication network as authentic when the first session key and the second session key are the same.
Abstract:
A transaction device for establishing a shared secret with a point of interaction (POI) over a communications network to enable encrypted communications between the transaction device and the point of interaction, the device comprising: an input arranged to receive communications from the point of interaction; a processor arranged to generate a first communication according to a Diffie-Hellman protocol; an output arranged to send the first communication to the point of interaction; wherein the processor is arranged to apply a randomly generated blinding factor, r, when generating the first communication and wherein, in response to receiving a second communication from the point of interaction at the input, the second communication having been generated according to the Diffie-Hellman protocol, the processor is arranged to apply the randomly generated blinding factor and generate a shared secret according to the Diffie-Hellman protocol in dependence on data contained within the second communication.
Abstract:
A contactless transaction terminal and method for interacting with a payment enabled mobile device to permit access to a location or to a service. The contactless transaction terminal includes a processor, a polling signal generator operably connected to the processor, an NFC circuit operably connected to the polling signal generator, and a receiver operably connected to the NFC circuit and to a data recovery circuit that is operably connected to the processor. Also included is a storage device operably connected to the processor. The storage device stores program instructions which when executed cause the processor to generate, via the polling signal generator, short-distance radio signals including at least three polling signals; emit, via the NFC circuit, the at least three polling signals at frequent intervals for detection by a payment-enabled mobile device; receive at least one of a Type A or Type B signal from the payment enabled mobile device; and permit access to at least one of a location or service.
Abstract:
A method of operating a payment-enabled mobile device to gain access to a location or a service. In an embodiment, a contactless front-end (CLF) component of a payment-enabled mobile device sequentially detects short-distance radio signals comprising at least two different polling signals, determines based on the sequence of the at least two different polling signals, that the payment-enabled mobile device is in proximity to a non-retail contactless transaction terminal, and then a payment application running on the payment-enabled mobile device bypasses a customary user verification feature. The process also includes the payment-enabled mobile device running the payment application performing a transaction with the non-retail contactless transaction terminal without invoking the customary user verification feature and then gaining access to at least one of a location or service. In some embodiments, the location or service includes one of a transit system, a hotel, a motor vehicle, a workplace, a room, a home, a bank branch, a vehicle charging station and a government facility.
Abstract:
Methods and devices are provided for use in detecting relay attacks between devices in a communications network. One method includes sending first data by a first device to a second device, and receiving, by the first device, a communication from the second device where the communication comprises second data generated at the second device and a time parameter related to the generation of the second data. The method also includes measuring a total transmission time at the first device between sending the first data and receiving the communication, and determining a further time parameter related to the generation of the second data based at least in part on the measured total transmission time. The method then further includes determining the presence of a relay attack between the first and second devices in dependence on a comparison of the time parameter and the further time parameter.
Abstract:
A method of operating a payment-enabled mobile device includes detecting, by the mobile device, that the mobile device is in proximity to a non-retail contactless transaction terminal. The method further includes permitting operation of an application program in the mobile device. The permitting of operation of the application program is in response to the detected proximity of the non-retail contactless transaction terminal. The operation of the application program is to engage in a transaction with the non-retail contactless transaction terminal while bypassing a user verification feature of the application program.
Abstract:
Methods and devices are provided for use in detecting relay attacks between devices in a communications network. One method includes sending first data by a first device to a second device, and receiving, by the first device, a communication from the second device where the communication comprises second data generated at the second device and a time parameter related to the generation of the second data. The method also includes measuring a total transmission time at the first device between sending the first data and receiving the communication, and determining a further time parameter related to the generation of the second data based at least in part on the measured total transmission time. The method then further includes determining the presence of a relay attack between the first and second devices in dependence on a comparison of the time parameter and the further time parameter.
Abstract:
A first command is sent from a payment terminal assembly to a payment device with an on-device balance to compute a cryptogram to complete a putative transaction. It is detected that the cryptogram is not received as expected. In response, an identifier of the payment device and transaction recovery data associated with the putative transaction are stored in a storage area of a terminal memory of the payment terminal assembly. The payment terminal assembly obtains the identifier of the payment device, upon re-presentation of the payment device. Upon such re-presentation, the payment terminal assembly compares the obtained identifier of the payment device to contents of the storage area. Conditioned at least upon the comparing yielding a match, a second command is sent from the payment terminal assembly to the payment device to instruct the payment device to re-produce the cryptogram to complete the putative transaction.
Abstract:
A method of performing a contactless transaction between a payment device and a terminal is described. The method comprises establishing a data connection between the payment device and the terminal and then establishing if the payment device and the terminal both support an enhanced security architecture. If they do not, they will then perform the contactless transaction according to a basic transaction flow using a first cryptographic system. If they do, they will perform the contactless transaction according to an enhanced transaction flow using a second cryptographic system. The first cryptographic system and the second cryptographic system comprise different asymmetric cryptographic systems. Suitable payment devices and terminals, and methods at the payment devices and terminals, are described.
Abstract:
A method of operating a payment-enabled mobile device includes detecting, by the mobile device, that the mobile device is in proximity to a non-retail contactless transaction terminal. The method further includes permitting operation of an application program in the mobile device. The permitting of operation of the application program is in response to the detected proximity of the non-retail contactless transaction terminal. The operation of the application program is to engage in a transaction with the non-retail contactless transaction terminal while bypassing a user verification feature of the application program.