Abstract:
Disclosed are catalyst systems and methods of making the catalyst systems for the polymerization of an olefin containing a solid titanium catalyst component containing an inorganic titanium compound, a magnesium alcohol adduct made from an inorganic magnesium compound and an alcohol, and a porous support having at least one of a certain specific surface area, a certain pore volume, and a certain median particle size. The catalyst system may further contain an organoaluminum compound and optionally an organosilicon compound. Also disclosed are methods of making polyolefins.
Abstract:
A method of lowering MFR response of a high melt flow rate polymer producing metallocene catalyst is provided. The method includes contacting the metallocene catalyst with a sufficient quantity of α,ω-diene monomer such that when the catalyst composition is contacted with polymerizable reactants under suitable polymerization conditions, the resulting polymer has an MFR rate in the range of 0.1 to 19. Hydrogen and ethylene may also be present in the polymerization. Additionally a catalyst composition is provided which includes a high melt flow rate polymer producing metallocene catalyst and a sufficient quantity of α,ω-diene monomers such that when the catalyst composition is contacted with a monomer under polymerization conditions, the resulting polymer has an MFR rate in the range of 0.1 to 19.
Abstract:
Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of an olefin containing a solid titanium catalyst component having a substantially spherical shape and containing a titanium compound and a support made from a magnesium compound and an alkyl silicate. The catalyst system may further contain an organoaluminum compound and an organosilicon compound. Also disclosed are methods of making an impact copolymer involving polymerizing an olefin to provide a polyolefin matrix and polymerizing a polyolefin rubber using a solid titanium catalyst component containing a titanium compound and a support made from a magnesium compound and an alkyl silicate.
Abstract:
Disclosed are catalyst systems and methods of making the catalyst systems/supports for the polymerization of an olefin containing a solid titanium catalyst component having a substantially spherical shape and containing an internal electron donor, a support made from a magnesium compound, an alcohol, an ether, a surfactant, and an alkyl silicate. The catalyst system may further contain an organoaluminum compound and an organosilicon compound. Also disclosed are methods of making an impact copolymer involving polymerizing an olefin to provide a polyolefin matrix and polymerizing a polyolefin rubber using a catalyst component containing a support made from a magnesium compound, an alcohol, an ether, a surfactant, and an alkyl silicate.
Abstract:
This invention relates to metallocene catalyst systems and to methods for their production and use. Specifically, this invention relates to catalyst promoters which increase the activity of the metallocene catalyst systems. The promoters can be, for example, styrene or substituted styrene in one embodiment. The metallocene catalyst systems can be used, for example, to make olefins. The catalyst systems of this invention can be supported.
Abstract:
This invention provides new supported catalyst compositions for the polymerization of 1-olefins, together with processes for preparing and using the catalysts. The catalyst compositions include two catalyst components. The first catalyst component is formed by reacting a halogen-containing compound of the formula: H.sub.a M.sup.1 X.sup.1.sub.b R.sup.1.sub.(c-b-a) wherein M.sup.1 is boron, carbon, silicon or mixtures thereof; X.sup.1 is Cl, Br or mixtures thereof; R.sup.1 is a hydrocarbyl or alkoxy radical; with a mixture produced by contacting a finely divided porous inorganic oxide support in an inert solvent with a solution made by combining a magnesium dihydrocarbyloxide dissolved in an inert solvent, and of the formula: Mg(OR.sup.2).sub.2 wherein R.sup.2 is a hydrocarbyl radical, with a transition metal hydrocarbyloxide of the formula: M.sup.2 (OR.sup.3).sub.y wherein M.sup.2 is a transition metal from Group IVB, VB, and VIB of the Periodic Table; and R.sup.3 is a hydrocarbyl radical. The second catalyst component of the new catalyst compositions is an organometal compound of the formula: M.sup.3 R.sup.4.sub.e-f X.sub.f wherein M.sup.3 is aluminum, magnesium, zinc or mixtures thereof; R.sup.4 is a saturated hydrocarbyl radical; X is hydrogen, halogen or an alkoxy. In a preferred aspect of the invention, the solution made by combining the magnesium dihydrocarbyloxide, dissolved in an inert solvent, with the transition metal hydrocarbyloxide, is reacted with a carboxylic acid derivative, of the formula R.sup.5 COZ, wherein R.sup.5 is a hydrocarbyl radical and Z is a halogen atom or an alkoxy radical. An important characteristic of this invention is that the new catalyst compositions give significantly higher hydrogen and comonomer responses and greater productivity with larger average particle size and higher bulk density than with at least certain state of the art catalysts.
Abstract:
A high activity alumoxane-metallocene supported catalyst for the polymerization of 1-olefins prepared by reacting undehydrated silica gel with a mixture of trimethylaluminum and triisobutylaluminum to produce a silica-alumoxane product which is then reacted with a Group IVB and/or Group VB metallocene to produce an active catalyst which may be obtained in powder form, suitable for use in gas or slurry phase reactors, by a removal of solvents and drying.
Abstract:
This invention relates to a process for preparing a supported metallocene alumoxane catalyst for use in the gas phase polymerization of olefins. The invention particularly relates to the use of silica gel containing from about 6 to about 10 percent by weight adsorbed water as the catalyst support material. It has been found that such silica gel may be safely added to an aluminum trialkyl solution to form by direct reaction with the adsorbed water content of the silica gel catalyst support material the alumoxane component of the catalyst system. An alumoxane coated silica gel is formed to which a metallocene may be added and the resulting material dried to free flowing powder. The dry free flowing powder may then be used as a supported metallocene alumoxane catalyst complex for gas phase polymerization of olefins.
Abstract:
This invention relates to a supported vanadium-alumoxane catalyst for use in gas and liquid polymerization of olefins. The invention particularly relates to the use of silica gel containing from about 6 to about 20 percent by weight adsorbed water as the catalyst support material. The particle size of the silica gel is generally between about 0.1 and 200.0 .mu.u. Such silica gel may be safely added to a trialkylaluminum solution to form by direct reaction with the adsorbed water content of the silica gel catalyst support material the alumoxane cocatalyst component of the catalyst system. An alumoxane coated silica gel is formed to which a vanadium compound is added and the resulting material dried to a free flowing powder. The dry free flowing powder may then be used as a supported vanadium alumoxane catalyst complex for the polymerization of olefins. Resins produced from such processes have a broad molecular weight distribution suitable in blow molding for the fabrication of household and industrial containers.
Abstract:
The present invention relates to catalyst systems containing solid catalyst components comprising titanium, magnesium, halogen and an internal electron donor compound having at least one ether group and at least one ketone group; organoaluminum compounds and alkyl benzoate derivatives as external electron donors. The present invention also relates to methods of making the catalyst systems, and methods of polymerizing or copolymerizing alpha-olefins using the catalyst systems.