摘要:
A chemical mechanical polishing apparatus and method can use an eddy current monitoring system and an optical monitoring system. Signals from the monitoring systems can be combined on an output line and extracted by a computer. A thickness of a polishing pad can be calculated. The eddy current monitoring system and optical monitoring system can measure substantially the same location on the substrate.
摘要:
A chemical mechanical polishing apparatus has a polishing pad, a carrier to hold a substrate against a first side of the polishing surface, and a motor coupled to at least one of the polishing pad and carrier head for generating relative motion therebetween. An eddy current monitoring system is positioned to generate an alternating magnetic field in proximity to the substrate, an optical monitoring system generates a light beam and detects reflections of the light beam from the substrate, and a controller receives signals from the eddy current monitoring system and the optical monitoring system.
摘要:
An endpoint detection method includes processing an outer surface of a substrate, directing an incident light beam through a window in an opaque metal body onto the surface being processed, receiving at a detector a reflected light beam from the substrate and generating a signal from the detector, and generating a signal based on the reflected light beam received at the detector, and detecting a processing endpoint. The signal is a time-varying cyclic signal that varies as the thickness of the layer varies over time, and detecting the processing endpoint includes detecting that a portion of a cycle of the cyclic signal has passed, the portion being less than a full cycle of the cyclic signal.
摘要:
The invention relates to a shell (1) arranged with extensible wings (3) having improved guidance characteristics during the gliding and final phase of the shell (1). The invention is characterized in that the extensible wings (3), via threaded wing fixtures (8), are movably arranged on rotatable axial guide shafts (6) on the shell body (2) for separate or simultaneous displacement of the wings (3) in the longitudinal direction A of the shell (1), for guidance of the shell (1) in the vertical and lateral directions during the trajectory phase of the shell, and in that the wings (3) are also rotatably arranged on radial guide shafts for controlling the angle of incidence of the wings (3) during the final phase of the shell (1).
摘要:
A system method and apparatus to monitor a frictional coefficient of a substrate undergoing polishing is described. A polishing pad assembly includes a polishing layer including a polishing surface, and a substrate contacting member flexibly coupled to the polishing layer having a top surface to contact an exposed surface of a substrate. At least a portion of the top surface is substantially coplanar with the polishing surface. A sensor is provided to measure a lateral displacement of the substrate contacting member. Some embodiments may provide accurate endpoint detection during chemical mechanical polishing to indicate the exposure of an underlying layer.
摘要:
An apparatus for chemical mechanical polishing (CMP) of a wafer has a rotatable platen to hold a polishing pad, a polishing head for holding the wafer against the polishing pad, an optical monitoring system and a position sensor. The platen has a hole therein, the optical monitoring system includes a light source to direct a light beam through the aperture toward the wafer from a side of the wafer contacting the polishing pad and a detector to receive reflections of the light beam from the wafer, and the position sensor senses when the hole is adjacent the wafer such that the light beam generated by the light source can pass through the hole and impinge on the wafer.
摘要:
Methods and apparatus to implement techniques for monitoring polishing a substrate. Two or more data points are acquired, where each data point has a value affected by features inside a sensing region of a sensor and corresponds to a relative position of the substrate and the sensor as the sensing region traverses through the substrate. A set of reference points is used to modify the acquired data points. The modification compensates for distortions in the acquired data points caused by the sensing region traversing through the substrate. Based on the modified data points, a local property of the substrate is evaluated to monitor polishing.
摘要:
Conductive elements of a chemical mechanical polishing system may generate undesired eddy currents under the influence of a time-dependent magnetic field used in an eddy current monitoring system. To improve the accuracy of an eddy current monitoring system, elements that may contribute an undesired signal to the sensed eddy current signal may be fabricated from a non-conductive material such as plastic or ceramic. In some implementations, elements may be fabricated from non-magnetic materials.
摘要:
Methods and apparatus to implement techniques for monitoring polishing a substrate. Two or more data points are acquired, where each data point has a value affected by features inside a sensing region of a sensor and corresponds to a relative position of the substrate and the sensor as the sensing region traverses through the substrate. A set of reference points is used to modify the acquired data points. The modification compensates for distortions in the acquired data points caused by the sensing region traversing through the substrate. Based on the modified data points, a local property of the substrate is evaluated to monitor polishing.
摘要:
A chemical mechanical polishing apparatus and method can use an eddy current monitoring system and an optical monitoring system. Signals from the monitoring systems can be combined on an output line and extracted by a computer. A thickness of a polishing pad can be calculated. The eddy current monitoring system and optical monitoring system can measure substantially the same location on the substrate.