Abstract:
A device for controlling the tension of a yarn includes a gauge measuring tension of the yarn and optionally a brake driven by the tension gauge to vary braking of the yarn. The gauge comprises electromagnetic control means having a moveable control element subject to a force dependent on the tension of the yarn, and a control circuit. The latter circuit supplies the electromagnetic control means with a current so that the moveable control element remains virtually still in a given position, during variations of the yarn tension. This current is indicative of the tension of the yarn and is measured to obtain a measure of the yarn tension. The device can be associated with a yarn feeder having a drum and moveable eyelet coaxial with the drum.
Abstract:
The parallel guide of an elastic force reducing dynamometer comprises a frame secured to a base plate, two essentially parallel plates, a load carrier, and four elastic tie joints. The load carrier supports a balance pan for receiving weights. A load-carrying element is clamped between the upper end of the load carrier and the lower end of the frame. Compressive force exerted on the load carrier is converted into an electric signal. The parallel guide is manufactured from a single piece, for example by profile extrusion or wire erosion. In an alternate embodiment of the invention, the load-carrying element is clamped between the lower end of the load carrier and the upper end of the frame. Tensile force exerted on the load carrier is converted into an electric signal.
Abstract:
Mass and force meter with a body, a load support guided parallely and vertically, a strokeless measuring system and a lever system for transmission of the load acting on the load support to the measuring system. The lever system consists at least partially of a single, flat plate a part of which is tightly connected to the body.
Abstract:
A mass and force meter locked over its measuring system and comprising a frame, a load support, and a force transmission channel with a load-dependent force transmission ratio and at least one swivel lever is provided, in which the combination of the non-linearity of the measuring system with that of other elements of the meter can be eliminated with a force transmission channel having a non-linear characteristic, such a channel having a smaller resilience than the known meters coupled with a better adaptability to meeting the requirements for the parameters determining the non-linearity to be eliminated and with easy adjustment of these parameters, the swivel lever being connected with at least one adjacent element of the force transmission channel by means of a link having one of its ends fitted to the swivel lever, the link being mounted at least partly outside the action line of the force transmitted and being at least zone-wise elastically bendable.
Abstract:
A mass and force meter having a frame, a load support and a digital computing device, a first and a second electrically excited, transversely vibrating string, first transmission elements transmitting the mass or force to be measured to said strings, second transmission elements transmitting a pre-loading force to said strings, so that the resultant frequency variations caused by the application of said mass or force are used in the computing and display device for computation of the magnitude of said mass or force, said first transmission elements having a first and a second branch, a first guide fixed to the frame, said first string having one end fastened to said frame and the other end connected to one end of said second string, to said first guide and to said first branch of said first transmission elements, a second guide fixed to the frame, the other end of said second string being connected to said second guide, to said second transmission elements and to said second branch of said first transmission elements.
Abstract:
Mass and force meter manufactured from a single block extruded from a profiled bar and comprising several components, with a frame, a load support guided parallelly and vertically by guiding means consisting of at least two flat springs mounted one above the other, a motionless measuring system and at least one transmission member that transmits only part of the weight of the mass or part of the force to be measured to the measuring system, in which at least one component implements at least two functions of the meter.
Abstract:
A mass and force meter particularly suited for weighing large and bulky loads, for example vehicles, which, in spite of the large dimensions of the load support due to the nature of the load, has a small total height and in which possible unpredictable deformations of the frame do not influence the precision of the measurement, said mass and force meter having a frame, a load support directly supported by two brackets each of which is connected to the frame by means of two flat springs forming a parallel guiding device, a measuring system, springs compensating the main share of the load and an elastic transmission element transmitting to the measuring system the load-proportional remaining share of the load.
Abstract:
Scale with a computing device and a digital display, in particular for commercial applications, said scale having logical and computing means for selection of one measuring range out of at least two measuring ranges in function of the weight of the goods on its platform, the smallest display units of each range being at least in a ratio 1:2, and further logical and computing means for selection in function of the weight of the higest load that may be displayed.
Abstract:
Scale with a digital display and an additional analogue display, the latter comprising at least one group of optically activable elements forming a row, each element corresponding to a value range of results of weighing operations, the length of the higher order range being at least ten times the length of the lower order range, all elements corresponding to value ranges lower than the value range to be displayed being activated.
Abstract:
A force and mass meter using two transversally vibrating preloaded strings as the force sensitive members. The two strings are placed in a transverse magnetic field and are caused to vibrate by means of an exciting current flowing across them which is delivered by one exciter each. The exciters consist of a metering bridge, and an operational amplifier deriving the exciting current from the error signal measured across the bridge. Mutual interference of the two exciters is drastically reduced, when the point of common potential of the two exciters is connected with at least one conductor to each of the exciters.