Abstract:
Arrays of single molecules and methods of producing an array of single molecules are described. Arrays with defined volumes between 10 attoliters and 50 picoliters enable single molecule detection and quantitation.
Abstract:
A microsphere-based analytic chemistry system is disclosed in which self-encoding microspheres having distinct characteristic optical response signatures to specific target analytes may be mixed together while the ability is retained to identify the sensor type and location of each sensor in a random dispersion of large numbers of such sensors in a sensor array using an optically interrogatable encoding scheme. An optical fiber bundle sensor is also disclosed in which individual microsphere sensors are disposed in microwells at a distal end of the fiber bundle and are optically coupled to discrete fibers or groups of fibers within the bundle. The identities of the individual sensors in the array are self-encoded by exposing the array to a reference analyte while illuminating the array with excitation light energy. A single sensor array may carry thousands of discrete sensing elements whose combined signal provides for substantial improvements in sensor detection limits, response times and signal-to-noise ratios.
Abstract:
A data storage apparatus includes an array of optical fibers. The array has a first end and a second end. The first end of the array includes multiple optical fiber ends, each optical fiber end having an end face adapted for receiving light of a wavelength λ into the fiber for conveyance to the second end of the fiber array. The second end of the array includes multiple tapered optical fiber tips, each tapered optical fiber end having a minimum diameter less than λ. An opaque coating covers a portion of the tapered optical fiber tips. The data storage apparatus also includes a photochromic medium located within a distance λ of the second end of the array.