Abstract:
A system for activating an appliance responsive to one of many transmission schemes includes a transmitter, memory holding data describing the transmission schemes, and a controller in communication with the transmitter and the memory. The controller is operable to store a fixed code. If a fixed code is stored, then the controller transmits a sequence of fixed code activation schemes, based on the fixed code and data held in the memory, until input indicating activation of the appliance is received. If no fixed code is stored, then the controller transmits a sequence of rolling code activation schemes, based on data held in the memory, until input indicating activation of the appliance is received. The controller stores in the memory an indication as to which activation scheme activated the appliance based on the received input. The controller generates an activation signal based on the stored indication and a received activation input.
Abstract:
A universal remote control interacts with a user to assist in training to one or more appliances. If the appliance is activated by a rolling code activation signal, a sequence of different rolling code activation signals is transmitted until the user indicates a successful rolling code transmission. If the appliance is activated by a fixed code activation signal, a fixed code word is used to generate and transmit each of a sequence of different fixed code activation signals until the user indicates a successful fixed code transmission. In response to an activation input, an activation signal is generated and transmitted based on data stored following user indication of a successful transmission.
Abstract:
A universal remote control is provided. For each channel supported, a mode is initially established as rolling mode. For a fixed code appliance, a fixed code is received and stored, and the mode changed to fixed mode. When an activation request is received, the mode associated with that activation input is examined. If the mode is rolling mode, a sequence of rolling code activation signals is transmitted, each based on one of the plurality of rolling code transmission schemes. If the mode is fixed mode, at least one activation signal is transmitted based on a fixed code transmission scheme and including a reversal or an inverse of the stored fixed code.
Abstract:
A universal remote control interacts with a user to assist in training to one or more appliances. If the appliance is activated by a rolling code activation signal, a sequence of different rolling code activation signals is transmitted until the user indicates a successful transmission. If the appliance is activated by a fixed code activation signal, a fixed code word is used to generate and transmit each of a sequence of different fixed code activation signals until the user indicates a successful transmission. At least one of the sequences of activation signals inserts a preset amount of time after each activation signal transmission. If user input is not received within the preset amount of time, the next activation signal in the sequence is transmitted.
Abstract:
A programmable remote control automatically learns characteristics necessary to generate an appliance activation signal. A sensor is positioned proximate to the appliance. A sequence of different activation signals is transmitted. A determination as to which signal activated the appliance is made based on a received sensor signal. Data representing the determined activation scheme is associated with an activation input.
Abstract:
A system for activating an appliance responsive to one of many transmission schemes includes a transmitter, memory holding data describing the transmission schemes, and a controller in communication with the transmitter and the memory. The controller is operable to store a fixed code. If a fixed code is stored, then the controller transmits a sequence of fixed code activation schemes, based on the fixed code and data held in the memory, until input indicating activation of the appliance is received. If no fixed code is stored, then the controller transmits a sequence of rolling code activation schemes, based on data held in the memory, until input indicating activation of the appliance is received. The controller stores in the memory an indication as to which activation scheme activated the appliance based on the received input. The controller generates an activation signal based on the stored indication and a received activation input.
Abstract:
Vehicle-based programmable appliance control systems and methods include a user control module and a transmitter module which are remotely located from one another. A wired connection, such as a vehicle wiring harness, directly interconnects the modules. The wired connection has two ends and is assigned solely to the modules as the user control module is connected to one end of the wired connection and the transmitter module is connected to the other end of the wired connection. The user control module includes a user control and the transmitter module includes a radio frequency transmitter. The user control module transmits a user activation signal based on assertion of the user control to the transmitter module for receipt by the transmitter via the wired connection. The transmitter transmits a radio frequency appliance activation signal based on the received user activation signal in order to activate an appliance.
Abstract:
Remote appliance activation can be achieved by relaying between radio frequency transmission schemes having different characteristics. A radio receiver receives radio frequency control signals for controlling the appliance. Each existing radio frequency transmitter is specifically designed to transmit wireless radio frequency control signals having receiver characteristics to the radio receiver. A new wireless radio frequency transmitter has transmitter characteristics, at least one of which is different from receiver characteristics. A radio relay learns the receiver characteristics from one of the existing transmitters and learns at least one transmitter characteristic from the new transmitter. Then, when an appliance radio frequency activation command is received from the new transmitter, the radio relay transmits a new radio frequency appliance activation command having the learned receiver characteristics.
Abstract:
A universal remote control interacts with a user to assist in training to one or more appliances. If the appliance is activated by a rolling code activation signal, a sequence of different rolling code activation signals is transmitted until the user indicates a successful rolling code transmission. If the appliance is activated by a fixed code activation signal, a fixed code word is used to generate and transmit each of a sequence of different fixed code activation signals until the user indicates a successful fixed code transmission. In response to an activation input, an activation signal is generated and transmitted based on data stored following user indication of a successful transmission.
Abstract:
A positioner has a first surface with a plurality of controlled electromagnets and a second surface having a circular cross-section movably positioned relative to the first surface. A plurality of magnetic positioners are disposed around the second surface. Control logic energizes a sequence of the controlled electromagnets to create magnetic interaction with the plurality of magnetic positioner and thereby move the second surface relative to the first surface. A rotor may be positioned to rotate relative to the second surface. Electromagnetic pickups in proximity with the rotor receive a time-varying electromagnetic field from rotor magnets as the rotor rotates, thereby generating electrical energy.