摘要:
In wireless systems, a method and system for pre-equalization in a single weight (SW) single channel (SC) multiple-input multiple-output (MIMO) system are provided. A first receive antenna and at least one additional receive antenna may receive a plurality of SC communication signals transmitted from at least two transmit antennas. Estimates of the propagation channels between transmit and receive antennas may be performed concurrently and may be determined from baseband combined channel estimates. Channel weights may be determined to modify the signals received by the additional receive antennas. Pre-equalization weight parameters may be determined to modify subsequent signals transmitted from the transmit antennas. The pre-equalization weight parameters may be based on the propagation channel estimates and may be determined by LMS, RLS, DMI, or by minimizing a cost function. Closed loop transmit diversity may also be supported.
摘要:
Certain aspects of the method may comprise generating at least one control signal that may be utilized to control at least a first of a plurality of received spatially multiplexed communication signals. An amplitude and/or phase of the first received spatially multiplexed communication signal may be adjusted via the generated control signal so that the amplitude and/or phase of the first received spatially multiplexed communication signal may be equivalent to an amplitude and/or phase of a second received spatially multiplexed communication signal. The amplitude of the first received spatially multiplexed communication signal is adjusted within the processing path used to process the first received spatially multiplexed communication signal.
摘要:
In wireless systems, a method and system for pre-equalization in a single weight (SW) single channel (SC) multiple-input multiple-output (MIMO) system are provided. A first receive antenna and at least one additional receive antenna may receive a plurality of SC communication signals transmitted from at least two transmit antennas. Estimates of the propagation channels between transmit and receive antennas may be performed concurrently and may be determined from baseband combined channel estimates. Channel weights may be determined to modify the signals received by the additional receive antennas. Pre-equalization weight parameters may be determined to modify subsequent signals transmitted from the transmit antennas. The pre-equalization weight parameters may be based on the propagation channel estimates and may be determined by LMS, RLS, DMI, or by minimizing a cost function. Closed loop transmit diversity may also be supported.
摘要:
In a wireless system, a method and system for channel estimation in a single channel MIMO system comprising two-transmit and multiple-receive antennas for WCDMA/HSDPA are provided. A first receive antenna and at least one additional receive antenna may receive a plurality of SC communication signals transmitted from a first and an additional transmit antennas. Estimates of the propagation channels between transmit and receive antennas may be performed concurrently and may be determined from a baseband combined channel estimate. The integration time may be based on channel estimation accuracy and wireless modem performance. The signals received in the additional receive antennas may be multiplied by a rotation waveform to achieve channel orthogonality. The rotation waveform's amplitude and phase components may be modified based on the channel estimates. Rotation of the received signals in the additional receive antennas may be continuous or periodic.
摘要:
Certain aspects of the method and system for implementing a single weight spatial multiplexing multi-input multi-output (MIMO) system without insertion loss may comprise receiving a plurality of spatially multiplexed communication signals for processing in a first reference processing path and at least a second processing path. At least one control signal may be generated that controls processing of at least a portion of the received plurality of spatially multiplexed communication signals in at least the second processing path. At least one phase adjustment signal may be generated from outside at least the second processing path. A phase of at least a portion of the received plurality of spatially multiplexed communication signals may be adjusted, which are processed in at least the second processing path via at least one generated phase adjustment signal.
摘要:
Certain aspects of the method may comprise receiving a plurality of spatially multiplexed communication signals from a plurality of transmit antennas at a base station. A plurality of vectors of baseband combined channel estimates may be generated based on phase rotation of the received plurality of spatially multiplexed communication signals. A plurality of pre-equalization weights may be generated based on the generated plurality of vectors of baseband combined channel estimates. The received plurality of spatially multiplexed communication signals may be modified based on the generated plurality of pre-equalization weights. At least a portion of the generated plurality of pre-equalization weights may be fed back to the base station for modifying subsequently transmitted spatially multiplexed communication signals which are transmitted from at least a portion of the plurality of transmit antennas at the base station.
摘要:
In wireless systems, a method and system for pre-equalization in a single weight (SW) single channel (SC) multiple-input multiple-output (MIMO) system are provided. A first receive antenna and at least one additional receive antenna may receive a plurality of SC communication signals transmitted from at least two transmit antennas. Estimates of the propagation channels between transmit and receive antennas may be performed concurrently and may be determined from baseband combined channel estimates. Channel weights may be determined to modify the signals received by the additional receive antennas. Pre-equalization weight parameters may be determined to modify subsequent signals transmitted from the transmit antennas. The pre-equalization weight parameters may be based on the propagation channel estimates and may be determined by LMS, RLS, DMI, or by minimizing a cost function. Closed loop transmit diversity may also be supported.
摘要:
A method for processing signals includes, in a wireless system comprising one or more processors and/or circuits integrated within a single chip, initializing values related to at least one channel response vector and at least one correlation vector using a conjugate gradient-based (CG) algorithm. A plurality of filter taps may be updated utilizing at least one channel response vector and at least one correlation vector, for a plurality of received clusters, based on the initialized values and at least one signal-to-noise ratio (SNR) for the received signal clusters. At least a portion of the received signal clusters may be filtered utilizing at least a portion of the updated plurality of filter taps. The updating may be repeated whenever a specified signal-to-noise ratio (SNR) for the received clusters is reached. The initialized values may be updated during a plurality of iterations.
摘要:
A method for processing signals includes, in a wireless system comprising one or more processors and/or circuits integrated within a single chip, initializing values related to at least one channel response vector and at least one correlation vector using a conjugate gradient-based (CG) algorithm. A plurality of filter taps may be updated utilizing at least one channel response vector and at least one correlation vector, for a plurality of received clusters, based on the initialized values and at least one signal-to-noise ratio (SNR) for the received signal clusters. At least a portion of the received signal clusters may be filtered utilizing at least a portion of the updated plurality of filter taps. The updating may be repeated whenever a specified signal-to-noise ratio (SNR) for the received clusters is reached. The initialized values may be updated during a plurality of iterations.
摘要:
Methods and systems for processing signals in a receiver are disclosed herein and may include updating a plurality of filter taps utilizing at least one channel response vector and at least one correlation vector, for a plurality of received clusters, based on initialized values related to the at least one channel response vector and the at least one correlation vector. At least a portion of the received signal clusters may be filtered utilizing at least a portion of the updated plurality of filter taps. The update may be repeated whenever a specified signal-to-noise ratio (SNR) for the received signal clusters is reached. The initialized values may be updated during a plurality of iterations, and the update may be repeated whenever a specified number of the plurality of iterations is reached.