Abstract:
A decision feedback equalizer for processing a data signal provides concurrent equalizer outputs (Zok, Z1k) for hard decision directed and soft decision directed modes. The joint architecture in accordance with the present invention takes advantage of the fact, herein recognized, that for each equalizer output symbol soft decision bit representation, a subset of these bits corresponds to the hard decision representation. As a result, the invention permits the concurrent output of two distinct modes with essentially the same hardware as a one output equalizer.
Abstract:
A blind equalization process (200) for an adaptive equalizer including a plurality of taps, each having a corresponding coefficient, is disclosed which comprises the following steps. Blind equalization (204) is performed on a subset of the coefficients in the adaptive equalizer. Then, if the coefficients have converged (206), a decision directed adaptive equalization process (220) is initiated.
Abstract:
A method and apparatus for controlling an equalizer receiving the output of an unknown system in order to produce a desired response for recovering the input to the system are characterized by iteratively adjusting the equalizer such that the unknown system combined with the equalizer behaves essentially as a linear system whose (t,n) taps, for some combinations of t and n, are iteratively adjusted according to the following rule: ##EQU1## where s.sub.t,n denotes the (t,n) tap before the iteration, s'.sub.t,n denotes the (t,n) tap after the iteration, I is a preselected integer greater then or equal to one, .alpha..sub.i i=1,2 . . . I are preselected scalars that may vary from iteration to iteration, and p.sub.i, q.sub.i i=1,2, . . . I are preselected non-negative integers such that p.sub.i +q.sub.i .gtoreq.2.
Abstract:
Disclosed is an automatic data communication system having communicating modems equipped with automatic equalizers. The equalizers respond to a first long equalization sequence automatically transmitted from another modem. In response to that long equalization sequence, the equalizer starts from a preset non-equalized condition and assumes a fully equalized condition. That equalized modem is also capable of automatically transmitting its own long equalization sequence to the other modem. Thereafter, second short equalization sequences are employed at the receiving modems to enable a memory storage associated with the automatic equalizers. The memory stores, in response to the long equalization sequence, signals which are indicative of the fully equalized condition. Accordingly, the equalizers do not have to start from a non-equalized condition for each new data message unless a dramatic distortion occurs. If such distortion does occur, it is automatically detected and long equalization sequences are again employed to fully re-equalize. The disclosed modems have detection means for automatically distinguishing between equalization sequences, line drop-outs, and data echoes.
Abstract:
Methods and systems for processing signals in a receiver are disclosed herein and may include updating a plurality of filter taps utilizing at least one channel response vector and at least one correlation vector, for a plurality of received clusters, based on initialized values related to the at least one channel response vector and the at least one correlation vector. At least a portion of the received signal clusters may be filtered utilizing at least a portion of the updated plurality of filter taps. The update may be repeated whenever a specified signal-to-noise ratio (SNR) for the received signal clusters is reached. The initialized values may be updated during a plurality of iterations, and the update may be repeated whenever a specified number of the plurality of iterations is reached.
Abstract:
A GMSK receiver with interference cancellation includes a linear equalizer configured to be coupled to a received signal from a first antenna and to provide first soft bits, an adaptive estimator, e.g., adaptive MLSE coupled to the first soft bits and configured to provide second soft bits; a quality assessor coupled to the first soft bits and configured to provide a quality indication; and a switching function coupled to the linear equalizer and the adaptive MLSE and controlled in accordance with the quality indication to provide output soft bits corresponding to at least one of the first soft bits and the second soft bits. The GMSK receiver can be extended to multiple antennas and corresponding methods for interference cancellation in a GMSK signal are discussed.
Abstract:
Methods and systems for processing signals in a receiver are disclosed herein and may include updating a plurality of filter taps utilizing at least one channel response vector and at least one correlation vector, for a plurality of received clusters, based on initialized values related to the at least one channel response vector and the at least one correlation vector. At least a portion of the received signal clusters may be filtered utilizing at least a portion of the updated plurality of filter taps. The update may be repeated whenever a specified signal-to-noise ratio (SNR) for the received signal clusters is reached. The initialized values may be updated during a plurality of iterations, and the update may be repeated whenever a specified number of the plurality of iterations is reached.
Abstract:
A method used in a time domain equalizer is provided. A method comprising the steps of: providing a time domain equalizer comprising a feed forward equalizer and a feedback equalizer; and using a conjugate gradient iteration in order to calculate a set of coefficients of the time domain equalizer.
Abstract:
A search engine selects initial coefficients for a receive equalizer. The search engine may be incorporated into a communication receiver that includes a decision feedback equalizer and clock and data recovery circuit. Here, the search engine may initialize various adaptation loops that may control the operation of, for example, a decision feedback equalizer, a clock and data recovery circuit and a continuous time filter. The receiver may include an analog-to-digital converter that is used to generate soft decision data for some of the adaptation loops.
Abstract:
Described is a transmission system for transmitting a multicarrier signal from a transmitter (10) to a receiver (20). The multicarrier signal comprises a plurality of subcarriers. The receiver (20) comprises a channel estimator (28) for estimating amplitudes of the subcarriers and for estimating time derivatives of the amplitudes. The receiver (20) further comprises an equalizer (24) for canceling intercarrier interference included in the received multicarrier signal in dependence on the estimated amplitudes and derivates (29). The receiver (20) comprises a multiplication by a N×N leakage matrix, and wherein the multiplication is implemented as a sequence of an N-point IFFT (82), N pointwise multiplications (84) and an N-point FFT (86). multiplications (84) and an N-point FFT (86).