摘要:
A method of measuring Raman signals comprises: an analyte placing step of placing an analyte on a detection surface of a microstructure plate which generates an enhanced electric field when irradiated with excitation light; an irradiating step of irradiating the detection surface with the excitation light so that the enhanced electric field is generated around the detection surface and light is emitted from the analyte and the detection surface to be enhanced by the generated enhanced electric field; a Raman signal obtaining step of detecting the enhanced light to obtain a Raman signal emitted from the analyte and a background signal for use as a reference, the Raman signal and the background signal having respective intensities; and a normalizing step of normalizing the Raman signal from the analyte by dividing the intensity of the Raman signal from the analyte by the intensity of the background signal obtained as the reference.
摘要:
In order to simply produce a microstructured body in which metal particles are arranged so as to be fixed to depressions of a metal substrate having at a surface a structure of protrusions and the depressions, a process for producing the microstructured body includes the steps of: (A) preparing a metal substrate 11 with a surface having a structure of protrusions and depressions; (B) forming a metal film 21 on the surface of the metal substrate 11, where the metal film 21 contains as the main component a metal different from the constituent metal of the metal substrate 11; and (C) annealing the metal film so that the constituent metal of the metal film is coagulated into particles.
摘要:
A device for Raman spectroscopy comprises a fine structure body provided with an array structure region, in which a plurality of recess areas having approximately identical shapes, as viewed from above, are arrayed regularly at approximately identical pitches. A surface of the fine structure body on the side of the array structure region acts as a light scattering surface. The fine structure body may be constituted of an un-anodized part of a metal body to be subjected to anodic oxidation processing, the un-anodized part remaining after a processing, wherein the anodic oxidation processing is performed on the metal body, a part of the metal body being thereby converted into a metal oxide layer, and wherein the metal oxide layer is removed from the metal body, has been performed.
摘要:
A near-field light-emitting element includes a transparent medium having a plane of incidence into which a laser beam enters, and a light-condensing plane on which the laser beam having entered the plane of incidence is concentrated, and a metal body provided on the light-condensing plane of the transparent medium having a first surface contacting the light-condensing plane, a second surface opposing the first surface, and an aperture which is formed to penetrate through the first and second surfaces at a position where the laser beam is concentrated and which emits a near-field light obtained from the laser beam. The metal body is arranged apart from a center of the aperture by a predetermined distance to connect together the first and second surfaces, and has a plasmon reflection plane that reflects toward the aperture a surface plasmon excited on the first and second surfaces by the laser beam concentrated at the aperture.
摘要:
A display device comprising the following arranged from light input side in the order listed below: a first reflector having a semi-transmissive and semi-reflective property; a translucent porous body having a plurality of pores in which a translucent material is filled, each of the pores having a substantially smaller diameter than the wavelength of input light; and a second reflector having a perfect reflection property, or a semi-transmissive and semi-reflective property. The average complex refractive index of the translucent porous body is changeable with respect to each display dot, and the wavelength of light absorbed by the translucent porous body is changeable with respect to each display dot according to the average complex refractive index. In this way, the input light is modulatable, and the modulated light is outputted from the first reflector and/or the second reflector to perform image display.
摘要:
A method of producing an inspection chip includes a microstructure producing step of producing a microstructure where metallic portions having dimensions permitting excitation of surface plasmons are formed and distributed on one surface of a substrate, a specimen attaching step of attaching a specimen to the surfaces of the metallic portions of the microstructure, and a metallic particle attaching step of attaching metallic particles having dimensions permitting excitation of surface plasmons to the metallic portions and the specimen, wherein the specimen is attached to the metallic portions to which no substance capable of specifically binding to the specimen is secured in the specimen attaching step, and/or the metallic particles to which no substance capable of specifically binding to the specimen is secured are attached to the specimen in the metallic particle attaching step.
摘要:
A display device comprising the following arranged from light input side in the order listed below: a first reflector having a semi-transmissive and semi-reflective property; a translucent porous body having a plurality of pores in which a translucent material is filled, each of the pores having a substantially smaller diameter than the wavelength of input light; and a second reflector having a perfect reflection property, or a semi-transmissive and semi-reflective property. The average complex refractive index of the translucent porous body is changeable with respect to each display dot, and the wavelength of light absorbed by the translucent porous body is changeable with respect to each display dot according to the average complex refractive index. In this way, the input light is modulatable, and the modulated light is outputted from the first reflector and/or the second reflector to perform image display.
摘要:
A multi-channel sensor is provided with sensor sections, each of the sensor sections reflecting or transmitting light, whose physical characteristics vary for different kinds of samples. Each of samples is supported by one of the sensor sections. A scanning mirror scans the sensor sections of the multi-channel sensor with measuring light. A scanning controller controls the scanning mirror and stores information, which represents scanning positions of the measuring light with respect to the multi-channel sensor. A detector receives reflected light or transmitted light, which is radiated out from each of the sensor sections when each of the sensor sections is scanned with the measuring light. The detector thus detects the physical characteristics of the reflected light or the transmitted light.
摘要:
In a plating-thickness monitor apparatus, a base light irradiation unit irradiates a member to be plated with base light L. A detection unit detects the characteristic of reflection light Le emitted from the member to be plated by irradiation with the base light L. A plating-thickness monitor unit examines, based on a detection result obtained by the detection unit, the thickness of a plating material deposited in very small pores formed on the member to be plated during plating.
摘要:
A first reflecting body, which has semi-transmissive semi-reflective characteristics, a light transmissive fine hole body having a plurality of fine holes, which are adapted to be filled with a light transmissive substance and have diameters sufficiently smaller than wavelengths of incident light, and a second reflecting body, which has perfect reflective characteristics or semi-transmissive semi-reflective characteristics, are located in this order from a light incidence side. Absorption characteristics for absorbing light having a specific wavelength are exhibited in accordance with a mean complex index of refraction of the first reflecting body, the mean complex index of refraction of the second reflecting body, and the mean complex index of refraction and a thickness of the light transmissive fine hole body. The incident light is modulated due to the absorption characteristics, and modulated light is radiated out from the first reflecting body and/or the second reflecting body.