摘要:
Methods of polymerizing at least one olefin include contacting the olefin with a catalyst comprising chromium and with a cocatalyst comprising a non-transition metal cyclopentadienyl (Cp) compound. The polymerization may be performed in the presence of hydrogen. Using the cocatalyst in conjunction with the catalyst increases several properties, such as the high load melt index (HLMI), the MW, and the MN, of the polymers produced by this polymerization method. Polymer compositions produced by such methods have various unique properties, including a PDI greater than about 30. Additional embodiments include articles of manufacture or end use articles formed from such polymer compositions.
摘要翻译:聚合至少一种烯烃的方法包括使烯烃与包含铬的催化剂和包含非过渡金属环戊二烯基(Cp)化合物的助催化剂接触。 聚合可以在氢的存在下进行。 与催化剂一起使用助催化剂增加了几种性质,例如所生产的聚合物的高负载熔体指数(HLMI),M W W N N N N N N N N 通过该聚合方法。 通过这种方法制备的聚合物组合物具有各种独特的性质,包括大于约30的PDI。另外的实施方案包括由这种聚合物组合物形成的制品或最终用途制品。
摘要:
Methods of polymerizing at least one olefin include contacting the olefin with a catalyst comprising chromium and with a cocatalyst comprising a non-transition metal cyclopentadienyl (Cp) compound. The polymerization may be performed in the presence of hydrogen. Using the cocatalyst in conjunction with the catalyst increases several properties, such as the high load melt index (HLMI), the MW, and the MN, of the polymers produced by this polymerization method. Polymer compositions produced by such methods have various unique properties, including a PDI greater than about 30. Additional embodiments include articles of manufacture or end use articles formed from such polymer compositions.
摘要翻译:聚合至少一种烯烃的方法包括使烯烃与包含铬的催化剂和包含非过渡金属环戊二烯基(Cp)化合物的助催化剂接触。 聚合可以在氢的存在下进行。 与催化剂一起使用助催化剂增加了几种性质,例如所生产的聚合物的高负载熔体指数(HLMI),M W W N N N N N N N N 通过该聚合方法。 通过这种方法制备的聚合物组合物具有各种独特的性质,包括大于约30的PDI。另外的实施方案包括由这种聚合物组合物形成的制品或最终用途制品。
摘要:
This invention relates to catalyst compositions comprising a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. This invention also relates to methods to prepare and use the catalyst compositions and new polyolefins. The compositions and methods disclosed herein provide ethylene polymers and copolymers with lower MI, increased melt strength, and good MD tear properties.
摘要:
This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
摘要:
This invention relates to the field of metal-catalyzed olefin polymerization methods and the polymers and films prepared therefrom. In one aspect, this invention provides polyethylene and ethylene/α-olefin copolymers formed in the presence of tightly-bridged metallocene catalyst, organoaluminum cocatalyst, and a chemically-treated solid oxide, and optionally in the presence of additional cocatalysts. The resins and films prepared from these polymers exhibit high haze values, low clarity values, and a low coefficient of friction.
摘要:
This invention relates to the field of metal-catalyzed olefin polymerization methods and the polymers and films prepared therefrom. In one aspect, this invention provides polyethylene and ethylene/α-olefin copolymers formed in the presence of tightly-bridged metallocene catalyst, organoaluminum cocatalyst, and a chemically-treated solid oxide, and optionally in the presence of additional cocatalysts. The resins and films prepared from these polymers exhibit high haze values, low clarity values, and a low coefficient of friction.
摘要:
This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. The new resins were characterized by useful properties in impact, tear, adhesion, sealing, extruder motor loads and pressures at comparable melt index values, and neck-in and draw-down.
摘要:
This invention relates to catalyst compositions comprising a first metallocene compound, a second metallocene compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound. This invention also relates to methods to prepare and use the catalyst compositions and new polyolefins. The compositions and methods disclosed herein provide ethylene polymers and copolymers with lower MI, increased melt strength, and good MD tear properties.
摘要:
This invention relates to the field of metal-catalyzed olefin polymerization methods and the polymers and films prepared therefrom. In one aspect, this invention provides polyethylene and ethylene/α-olefin copolymers formed in the presence of tightly-bridged metallocene catalyst, organoaluminum cocatalyst, and a chemically-treated solid oxide, and optionally in the presence of additional cocatalysts. The resins and films prepared from these polymers exhibit high haze values, low clarity values, and a low coefficient of friction.
摘要:
Methods of producing a polymer include contacting at least one olefin with a catalyst prepared by contacting a support comprising alumina with a sulfating agent and with chromium. Polymer compositions produced in this manner may exhibit relatively low levels of long chain branching and relatively high molecular weights. In an embodiment, polymer compositions with a PDI in a range of from about 6 to about 15 have MW values greater than about 300,000 g/mol and Eo values less than about 1×106 Pa.s. The polymer compositions may further have Theological breadths greater than about 0.25 and relaxation times less than about 10 seconds.