Abstract:
A catheter assembly includes a cap and a spring-biased tethering member coupled thereto. The cap includes first and second portions, and a transition zone extending therebetween. A girth of the first portion is sized to fit within a distal-most opening of the catheter assembly; and a girth of the second portion tapers from a first size at the transition zone, which is too large to fit within the distal-most opening, to a smaller size at a distal end of the cap. The spring-biased tethering member holds the cap in open and closed positions, when the cap first portion extends within the distal-most opening, and when the cap is separated from the distal-most opening, respectively. At the closed position, the first portion is approximately concentric with the distal-most opening, and at the open position, an entirety of the cap is laterally offset from the distal-most opening.
Abstract:
Devices, systems, and methods deliver implantable medical devices for ventricular-from-atrial (VfA) cardiac therapy. A VfA device may be implanted in the right atrium (RA) with an electrode extending from the right atrium into the left ventricular myocardium. A flexible leed, or another probe, may be advanced to the potential implantation site and used to identify a precise location for implantation of a medical device, such as an electrode, leadlet, lead, or intracardiac device. Some methods may include locating a potential implantation site in the triangle of Koch region in the right atrium of a patient's heart; attaching a fixation sheath to the right-atrial endocardium in the potential implantation site; and implanting the medical device over a guide wire at the potential implantation site. An implantable medical device may include an intracardiac housing and a leadlet, which may be delivered by these methods.
Abstract:
This disclosure provides tools and implant techniques utilizing such tools to gain access to and implant a medical device, such as a medical electrical lead, within extravascular spaces. In one example, this disclosure provides a tool for creating a sub-sternal tunnel in a patient. The tool comprises a relatively straight guide member extending from a first end thereof to a second end thereof, a tunneling member extending from a first end thereof to a tip thereof, the tunneling member extending alongside and coplanar with the guide member, the first end of the tunneling member and the first end of the guide member being joined together, and a handle coupled to the guide member.
Abstract:
Systems, devices, and methods may be used to deliver and provide cardiac pacing therapy to a patient. Leads or leadlets carrying one or more left ventricular electrodes may be positioned in or near the interventricular septum to sense and pace left ventricular signals of the patient's heart. In one example, a leadlet including one or more left ventricular electrodes may extend in the coronary sinus from a leadless implantable medical device located in the right atrium.
Abstract:
A medical access tool includes a needle member extending along a longitudinal axis, and a coiled wire extending around the axis. An inner surface of the coiled wire, along a proximal segment thereof, is spaced radially apart from an outer surface of the needle member, and a distal segment of the coiled wire extends distally to a tissue-engaging tip of the coiled wire, a piercing distal tip of the needle member being recessed proximally from the tissue-engaging tip at a fixed distance. An operator may rotate the coiled wire to engage tissue, for example, that of a pericardial sac or a diaphragmatic attachment, which then travels proximally along the coiled wire and into contact with the needle member's distal tip, to be pierced through thereby. At least one lumen of the needle member provides a passageway through which the operator may advance a guide wire and/or inject a fluid.
Abstract:
Devices, systems, and methods deliver implantable medical devices for ventricular-from-atrial (VfA) cardiac therapy. A VfA device may be implanted in the right atrium (RA) with an electrode extending from the right atrium into the left ventricular myocardium. A flexible leed, or another probe, may be advanced to the potential implantation site and used to identify a precise location for implantation of a medical device, such as an electrode, leadlet, lead, or intracardiac device. Some methods may include locating a potential implantation site in the triangle of Koch region in the right atrium of a patient's heart; attaching a fixation sheath to the right-atrial endocardium in the potential implantation site; and implanting the medical device over a guide wire at the potential implantation site. An implantable medical device may include an intracardiac housing and a leadlet, which may be delivered by these methods.
Abstract:
This disclosure describes various examples of multi-purpose tools and associated methods for safely gaining access to extravascular spaces. The multi-purpose tools described herein are particularly suited for safely gaining access to the sub-sternal space underneath the sternum/ribcage as well as tunneling subcutaneously above the ribcage for the purpose of positioning of a medical electrical lead. This eliminates the need for separate tools for tunneling in different extravascular spaces by providing a single tool capable of the multiple uses.
Abstract:
A method and system for employing a medical device is disclosed. The medical device includes a housing, a processor disposed within the housing, a connector module, and a medical electrical epicardial lead connected to the processor through the connector module. The epicardial lead is used to sense a cardiac signal from tissue of a patient. The lead comprises an insulative lead body that includes a proximal end and a distal end, at least one conductor disposed in the lead body, and a side helical fixation member, disposed a distance from the distal end, the side helical fixation member. The side helical fixation member comprises a set of windings configured to wrap around the lead body circumference. The side helical fixation member includes a distal tip comprising a sharpened elongated flat free end that is perpendicular to the lead body and angled toward an inside of the set of windings.
Abstract:
A transseptal catheter delivery system includes an elongate first tubular member and an elongate second tubular member receivable within the first tubular member. The first tubular member includes an adjustable portion adjacent a distal end. The second tubular member is adapted to receive an instrument to be placed in the left ventricle, and includes a curved portion adjacent its distal end in a relaxed state. The adjustable portion is deflectable toward the atrial septum to guide a puncturing tool and/or guide insertion of the second tubular member through a septal puncture into the left atrium. Within the left atrium, the curved portion is oriented toward the left ventricle to guide insertion of a guide wire, and subsequently the second tubular member, into the left ventricle. Methods of transvenously accessing a left ventricle are also provided.
Abstract:
A tool includes a handle, a plunger actuator proximate the handle, a shaft extending from the handle, a plunger, an engagement mechanism. The shaft includes a proximal end and a distal end, and the shaft defines a channel extending along a length of the shaft. A first actuation of the plunger actuator causes the plunger to translate along the length of the shaft in a distal direction. A second actuation of the plunger actuator causes the plunger to translate along the length of the shaft in a proximal direction. The engagement mechanism is disposed on the distal end and is configured to engage an implantable medical device, and release the implantable medical device in response to the plunger exerting a contact force on the implantable medical device exceeding a reaction force of the engagement mechanism when the plunger translates along the length of the shaft in the distal direction.