Abstract:
A medical device includes an elongate body, an expandable treatment element, a plurality of flexible shafts, and a plurality of electrodes. The elongate body has a proximal portion and a distal portion opposite the proximal portion. The expandable treatment element is coupled to the elongate body to receive a fluid and, in some examples, is anchored to the plurality of flexible shafts with a plurality of retention elements. In some examples, each flexible shaft of the plurality of flexible shafts has a braided configuration. Each electrode of the plurality of electrodes is attached and electrically coupled to a respective flexible shaft of the plurality of flexible shafts.
Abstract:
Techniques facilitating augmented reality-assisted surgery are provided. In one example, a method is provided that includes receiving, by a first device including a processor, image data associated with an external portion of a tool located within a body of a patient, wherein the image data includes first information indicative of a first fiducial marker on the external portion of the tool. The method also includes determining one or more relative positions of an internal portion of the tool within the body relative to one or more anatomical structures of the body based on the image data and a defined configuration of the tool. The method also includes generating one or more representations of the tool within the body relative to the one or more anatomical structures based on the one or more relative positions and the defined configuration of the tool.
Abstract:
This disclosure provides tools and implant techniques utilizing such tools to gain access to and implant a medical device, such as a medical electrical lead, within extravascular spaces. In one example, this disclosure provides a tool for creating a sub-sternal tunnel in a patient. The tool comprises a relatively straight guide member extending from a first end thereof to a second end thereof, a tunneling member extending from a first end thereof to a tip thereof, the tunneling member extending alongside and coplanar with the guide member, the first end of the tunneling member and the first end of the guide member being joined together, and a handle coupled to the guide member.
Abstract:
Techniques facilitating augmented reality-assisted surgery are provided. In one example, a method is provided that includes receiving, by a first device including a processor, image data associated with an external portion of a tool located within a body of a patient, wherein the image data includes first information indicative of a first fiducial marker on the external portion of the tool. The method also includes determining one or more relative positions of an internal portion of the tool within the body relative to one or more anatomical structures of the body based on the image data and a defined configuration of the tool. The method also includes generating one or more representations of the tool within the body relative to the one or more anatomical structures based on the one or more relative positions and the defined configuration of the tool.
Abstract:
This disclosure provides tools and implant techniques utilizing such tools to gain access to and implant a medical device, such as a medical electrical lead, within extravascular spaces. In one example, this disclosure provides a tool for creating a sub-sternal tunnel in a patient. The tool comprises a relatively straight guide member extending from a first end thereof to a second end thereof, a tunneling member extending from a first end thereof to a tip thereof, the tunneling member extending alongside and coplanar with the guide member, the first end of the tunneling member and the first end of the guide member being joined together, and a handle coupled to the guide member.
Abstract:
Techniques facilitating augmented reality-assisted surgery are provided. In one example, a method is provided that includes receiving, by a first device including a processor, image data associated with an external portion of a tool located within a body of a patient, wherein the image data includes first information indicative of a first fiducial marker on the external portion of the tool. The method also includes determining one or more relative positions of an internal portion of the tool within the body relative to one or more anatomical structures of the body based on the image data and a defined configuration of the tool. The method also includes generating one or more representations of the tool within the body relative to the one or more anatomical structures based on the one or more relative positions and the defined configuration of the tool.
Abstract:
This disclosure provides tools and implant techniques utilizing such tools to gain access to and implant a medical device, such as a medical electrical lead, within extravascular spaces. In one example, this disclosure provides a tool for creating a sub-sternal tunnel in a patient. The tool comprises a relatively straight guide member extending from a first end thereof to a second end thereof, a tunneling member extending from a first end thereof to a tip thereof, the tunneling member extending alongside and coplanar with the guide member, the first end of the tunneling member and the first end of the guide member being joined together, and a handle coupled to the guide member.
Abstract:
In some examples, a medical device system includes an electrode. The medical device system may include impedance measurement circuitry coupled to the electrode, the impedance measurement circuitry may be configured to generate an impedance signal indicating impedance proximate to the electrode. The medical device system may include processing circuitry that may be configured to identify a first frequency component and a second frequency component of the impedance signal, and provide an indication of a location of the electrode in a patient based on the first frequency component and the second frequency component.