摘要:
The present invention relates to processes for the purification of single-wall carbon nanotubes (SWNTs). Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the side of the single-wall carbon nanotubes. The present purification processes remove the extraneous carbon as well as metal-containing residual catalyst particles.
摘要:
The present invention is generally directed to new liquid-liquid extraction methods for the length-based separation of carbon nanotubes (CNTs) and other 1-dimensional nanostructures. In some embodiments, such methods are directed to separating SWNTs on the basis of their length, wherein such methods comprise the steps of: (a) functionalizing SWNTs to form functionalized SWNTs with ionizable functional moieties; (b) dissolving said functionalized SWNTs in a polar solvent to form a polar phase; (c) dissolving a substoichiometric (relative to the amount of ionizable functional moieties present on the SWNTs) amount of a phase transfer agent in a non-polar solvent to form a non-polar phase; (d) combining the polar and non-polar phases to form a bi-phase mixture; (e) adding a cationic donor species to the bi-phase mixture; and (f) agitating the bi-phase mixture to effect the preferential transport of short SWNTs into the non-polar phase such that the non-polar phase is enriched in short SWNTs and the polar phase is enriched in longer SWNTs. In other embodiments, analogous methods are used for the length-based separation of any type of CNT, and more generally, for any type of 1-dimensional nanostructure.
摘要:
The present invention involves alewives of highly aligned single-wall carbon nanotubes (SWNT), process for making the same and compositions thereof. The present invention provides a method for effectively making carbon alewives, which are discrete, acicular-shaped aggregates of aligned single-wall carbon nanotubes and resemble the Atlantic fish of the same name. Single-wall carbon nanotube alewives can be conveniently dispersed in materials such as polymers, ceramics, metals, metal oxides and liquids. The process for preparing the alewives comprises mixing single-wall carbon nanotubes with 100% sulfuric acid or a superacid, heating and stirring, and slowly introducing water into the single-wall carbon nanotube/acid mixture to form the alewives. The alewives can be recovered, washed and dried. The properties of the single-wall carbon nanotubes are retained in the alewives.
摘要:
The present invention is directed to the creation of macroscopic materials and objects comprising aligned nanotube segments. The invention entails aligning single-wall carbon nanotube (SWNT) segments that are suspended in a fluid medium and then removing the aligned segments from suspension in a way that macroscopic, ordered assemblies of SWNT are formed. The invention is further directed to controlling the natural proclivity or nanotube segments to self assemble into or ordered structures by modifying the environment of the nanotubes and the history of that environment prior to and during the process. The materials and objects are “macroscopic” in that they are large enough to be seen without the aid of a microscope or of the dimensions of such objects. These macroscopic ordered SWNT materials and objects have the remarkable physical, electrical, and chemical properties that SWNT exhibit on the microscopic scale because they are comprised of nanotubes, each of which is aligned in the same direction and in contact with its nearest neighbors. An ordered assembly of closest SWNT also serves as a template for growth of more and larger ordered assemblies. An ordered assembly further serves as a foundation for post processing treatments that modify the assembly internally to specifically enhance selected material properties such as shear strength, tensile strength, compressive strength, toughness, electrical conductivity, and thermal conductivity.
摘要:
The present invention is generally directed to the block copolymerization of rigid rod polymers with carbon nanotubes (CNTs), the CNTs generally being shortened, to form nanotube block copolymers. The present invention is also directed to fibers and other shaped articles made from the nanotube block copolymers of the present invention.
摘要:
A continuous gas-phase method for producing single-wall carbon nanotubes at high catalyst productivity and high yield is disclosed. The method involves the use of a novel in-situ formed catalyst to initiate and grow single-wall carbon nanotubes using a carbon-containing feedstock in a high temperature and pressure process. The catalyst comprises in-situ-generated transition metal particles in contact with in-situ-generated refractory particles. The population of nucleating sites for single-wall carbon nanotubes is enhanced due to the ease of formation of a population of refractory particles. These, in turn, improve the nucleation and stability of the transition metal particles that grow on them. The larger number of transition metal particles translate into a larger number of sites for single-wall carbon nanotube production. The higher catalyst yields provide a means for obtaining higher purity single-wall carbon nanotubes.
摘要:
The present invention relates to an all gas-phase process for the purification of single-wall carbon nanotubes and the purified single-wall carbon nanotube material. Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the sides of the single-wall carbon nanotubes and “ropes” of single-wall carbon nanotubes. The purification process removes the extraneous carbon as well as metal-containing residual catalyst particles. The process comprises oxidation of the single-wall carbon nanotube material, reduction and reaction of a halogen-containing gas with the metal-containing species. The oxidation step may be done dry or in the presence of water vapor. The present invention provides a scalable means for producing high-purity single-wall carbon nanotube material.
摘要:
The present invention relates to processes for the purification of single-wall carbon nanotubes (SWNTs). Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the side of the single-wall carbon nanotubes. The present purification processes remove the extraneous carbon as well as metal-containing residual catalyst particles.
摘要:
A method for cutting single-wall carbon nanotubes involves partially fluorinating single-wall carbon nanotubes and pyrolyzing the partially fluorinated nanotubes in an inert atmosphere or vacuum up to about 1000° C. The nanotubes are optionally purified before cutting. The partial fluorination involves fluorinating the nanotubes to a carbon-fluorine stoichiometry of CFx, where x is up to about 0.3. The invention also relates to the derivatization of fluorinated and cut single-wall carbon nanotubes. The single-wall carbon nanotubes can be cut to any length depending on the fluorination and pyrolysis conditions. Short nanotubes are useful in various applications, such as field emitters for flat panel displays and as “seeds” for further nanotube growth.
摘要:
The present invention relates to a process for the purification of single-wall carbon nanotubes and the purified single-wall carbon nanotube material. Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the sides of the single-wall carbon nanotubes and “ropes” of single-wall carbon nanotubes. The purification process removes the extraneous carbon as well as metal-containing residual catalyst particles. The process employs steps including a gas-phase oxidation of the amorphous carbon and subsequent liquid-phase reaction of a halogen-containing acid with the metal-containing species. Optionally, the single-wall carbon nanotube material may be annealed dry or in the presence of moisture. The present invention provides a scalable means for producing high-purity single-wall carbon nanotube material.