摘要:
The present invention provides human glycoprotein hormone (hGPH) α-chain splice variants, including isolated nucleic acids encoding these variants and the encoded amino acid sequences, as well as antibodies, antisense oligonucleotides, expression vectors and host cells comprising these sequences. The present invention further discloses the use of these sequences in the diagnosis, prevention and treatment of symptoms, diseases and disorders related to glycoprotein hormones.
摘要:
The present invention provides human glycoprotein hormone (hGPH) α-chain splice variants, including isolated nucleic acids encoding these variants and the encoded amino acid sequences, as well as antibodies, antisense oligonucleotides, expression vectors and host cells comprising these sequences. The present invention further discloses the use of these sequences in the diagnosis, prevention and treatment of symptoms, diseases and disorders related to glycoprotein hormones.
摘要:
A method of annotating biomolecular sequences. The method comprises (a) computationally clustering the biomolecular sequences according to a progressive homology range, to thereby generate a plurality of clusters each being of a predetermined homology of the homology range; and (b) assigning at least one ontology to each cluster of the plurality of clusters, the at least one ontology being: (i) derived from an annotation preassociated with at least one biomolecular sequence of each cluster; and/or (ii) generated from analysis of the at least one biomolecular sequence of each cluster thereby annotating biomolecular sequences.
摘要:
The present invention relates to alternative splice variants of Amylin and members of the Pancreatic Polypeptide family, namely PYY, NPY, and PPY, vectors and compositions that include the same, and methods of use thereof. This invention provides peptides, nucleic acid sequences which encode same, analogs and derivatives thereof, antibodies which specifically recognize the variant sequences, compositions that include the same and methods of use thereof.
摘要:
The present invention concerns novel variants produced by alternative splicing of known genes, amino acid sequences of the variants as well as their uses in detection and therapy.
摘要:
The present invention concerns nucleic acid sequences and amino acid sequences of dominant negative variants of kinases, i.e. of sequences which inhibit activity of kinases in a dominant manner. The invention also concerns pharmaceutical compositions and detection methods using these sequences.
摘要:
The present invention concerns nucleic acid sequences and amino acid sequences of dominant negative variants of kinases, i.e. of sequences which inhibit activity of kinases in a dominant manner. The invention also concerns pharmaceutical compositions and detection methods using these sequences.
摘要:
Provided are substantially pure CD40 splice variants that include altered internal sequences and unique tail sequences relative to previously described CD40 protein sequences. Also provided are fragments of the CD40 splice variants comprising at least 10 amino acids including at least 4 amino acids of the unique tail sequence; the unique tail sequences, and homologues thereof having at least 10 amino acids and 90% identity and antibodies which bind to an epitope on such proteins are disclosed. Pharmaceutical compositions comprising the protein, antibodies, isolated nucleic acid molecule that encode such proteins and pharmaceutical composition comprising such nucleic acid molecules are also disclosed. The present invention additionally relates to recombinant expression vectors that include the nucleic acid molecules and host cells which comprise such recombinant expression vectors are disclosed. In vitro methods of detecting in a sample the presence and/or quantity of such proteins or transcript which encodes such proteins are disclosed as are kits and reagents for performing the methods. Methods of modulating CD40-CD154 interactions in an individual are disclosed.
摘要:
A method of annotating biomolecular sequences. The method comprises (a) computationally clustering the biomolecular sequences according to a progressive homology range, to thereby generate a plurality of clusters each being of a predetermined homology of the homology range; and (b) assigning at least one ontology to each cluster of the plurality of clusters, the at least one ontology being: (i) derived from an annotation preassociated with at least one biomolecular sequence of each cluster; and/or (ii) generated from analysis of the at least one biomolecular sequence of each cluster thereby annotating biomolecular sequences.