Abstract:
Described herein is a multi-view display (based on spatial and/or temporal multiplexing) having an optimization mechanism that dynamically adjust views based upon detected state changes with respect to one or more views. The optimization mechanism determines viewing parameters (e.g., brightness and/or colors) for a view based upon a current position of the view, and/or on the multi-view display's capabilities. The state change may correspond to the view (a viewer's eye) moving towards another viewing zone, in which event new viewing parameters are determined, which may be in anticipation of entering the zone. Another state change corresponds to more views being needed than the display is capable of outputting, whereby one or more existing views are degraded, e.g., from 3D to 2D and/or from a personal video to a non-personal view. Conversely, a state change corresponding to excess capacity becoming available can result in enhancing a view to 3D and/or personal.
Abstract:
Disclosed herein are techniques for scaling and translating gestures such that the applicable gestures for control may vary depending on the user's distance from a gesture-based system. The techniques for scaling and translation may take the varying distances from which a user interacts with components of the gesture-based system, such as a computing environment or capture device, into consideration with respect to defining and/or recognizing gestures. In an example embodiment, the physical space is divided into virtual zones of interaction, and the system may scale or translate a gesture based on the zones. A set of gesture data may be associated with each virtual zone such that gestures appropriate for controlling aspects of the gesture-based system may vary throughout the physical space.
Abstract:
A “Concurrent Projector-Camera” uses an image projection device in combination with one or more cameras to enable various techniques that provide visually flicker-free projection of images or video, while real-time image or video capture is occurring in that same space. The Concurrent Projector-Camera provides this projection in a manner that eliminates video feedback into the real-time image or video capture. More specifically, the Concurrent Projector-Camera dynamically synchronizes a combination of projector lighting (or light-control points) on-state temporal compression in combination with on-state temporal shifting during each image frame projection to open a “capture time slot” for image capture during which no image is being projected. This capture time slot represents a tradeoff between image capture time and decreased brightness of the projected image. Examples of image projection devices include LED-LCD based projection devices, DLP-based projection devices using LED or laser illumination in combination with micromirror arrays, etc.
Abstract:
Systems and methods for creating multiple haptic zone responses for electronic devices are disclosed. Suitable electronic devices are embedded with a number of haptic elements that are spaced along the surface of the device. In one aspect, the number of haptic elements is sufficient to have at least one haptic element proximal in a grip zone of a user. During operation, the device may receive user interaction information (e.g., user location, pressure etc.) and indications to deliver a haptic response to the user, possibly depending on the execution of an application where haptic response is appropriate. The device determines a desirable number of haptic elements to energize depending upon the user interaction information and the set of haptic elements define a dynamic set of user interaction zones in which to deliver the haptic response.
Abstract:
Described herein is a multi-view display (based on spatial and/or temporal multiplexing) having an optimization mechanism that dynamically adjust views based upon detected state changes with respect to one or more views. The optimization mechanism determines viewing parameters (e.g., brightness and/or colors) for a view based upon a current position of the view, and/or on the multi-view display's capabilities. The state change may correspond to the view (a viewer's eye) moving towards another viewing zone, in which event new viewing parameters are determined, which may be in anticipation of entering the zone. Another state change corresponds to more views being needed than the display is capable of outputting, whereby one or more existing views are degraded, e.g., from 3D to 2D and/or from a personal video to a non-personal view. Conversely, a state change corresponding to excess capacity becoming available can result in enhancing a view to 3D and/or personal.
Abstract:
A stylus pen that can be used as an input device to a digitizer associated with a computer screen on a computing device, such as a computer, mobile device, tablet, etc. The stylus pen can include an end cap that has multiple pressure thresholds for implementing different user-input commands. To detect the pressure being applied to the end cap, the cap is movable relative to a stylus pen body so as to move a plunger in proximity or contact with a mechanical switch. The mechanical switch is a single-action switch that is converted to a dual-action switch by using the electrical conductivity of the switch to detect an electrical coupling between a plunger and the switch. The electrical coupling can be in the form of a capacitive coupling or a direct electrical connection. Further pressure can be detected through actuation of the mechanical switch.
Abstract:
A “Concurrent Projector-Camera” uses an image projection device in combination with one or more cameras to enable various techniques that provide visually flicker-free projection of images or video, while real-time image or video capture is occurring in that same space. The Concurrent Projector-Camera provides this projection in a manner that eliminates video feedback into the real-time image or video capture. More specifically, the Concurrent Projector-Camera dynamically synchronizes a combination of projector lighting (or light-control points) on-state temporal compression in combination with on-state temporal shifting during each image frame projection to open a “capture time slot” for image capture during which no image is being projected. This capture time slot represents a tradeoff between image capture time and decreased brightness of the projected image. Examples of image projection devices include LED-LCD based projection devices, DLP-based projection devices using LED or laser illumination in combination with micromirror arrays, etc.
Abstract:
A 3D silhouette sensing system is described which comprises a stereo camera and a light source. In an embodiment, a 3D sensing module triggers the capture of pairs of images by the stereo camera at the same time that the light source illuminates the scene. A series of pairs of images may be captured at a predefined frame rate. Each pair of images is then analyzed to track both a retroreflector in the scene, which can be moved relative to the stereo camera, and an object which is between the retroreflector and the stereo camera and therefore partially occludes the retroreflector. In processing the image pairs, silhouettes are extracted for each of the retroreflector and the object and these are used to generate a 3D contour for each of the retroreflector and object.
Abstract:
A 3D silhouette sensing system is described which comprises a stereo camera and a light source. In an embodiment, a 3D sensing module triggers the capture of pairs of images by the stereo camera at the same time that the light source illuminates the scene. A series of pairs of images may be captured at a predefined frame rate. Each pair of images is then analyzed to track both a retroreflector in the scene, which can be moved relative to the stereo camera, and an object which is between the retroreflector and the stereo camera and therefore partially occludes the retroreflector. In processing the image pairs, silhouettes are extracted for each of the retroreflector and the object and these are used to generate a 3D contour for each of the retroreflector and object.
Abstract:
Examples are disclosed herein that relate to display devices. One example provides a display device comprising a chassis including a ledge surrounding an aperture, a cover layer positioned in the aperture, and a display layer attached to the cover layer, the display layer having a perimeter portion extending beyond an outer edge of the cover layer and positioned below an underside of the ledge.