摘要:
When a current-writing type pixel circuit is made, it involves a greater number of transistors and TFTs occupy much of the area of the pixel circuit. To alleviate this problem, two pixel circuits (P1, P2) have a first scanning TFT (14), a current-voltage conversion TFT (16), respective second scanning TFTs (15-1, 15-2), capacitors (13-1, 13-2), and drive TFTs (12-1, 12-2) for OLED including organic EL elements (11-2, 11-2) of two pixels, for example, in a row direction. In each of the pixel circuits, the first scanning TFT (14) handling a large amount of current (Iw) as compare with current flowing through the OLED (11-2, 11-2), and the current-voltage conversion TFT (16) are shared between two pixels.
摘要:
In an active-matrix display device and a method for driving the active-matrix display device, a fifth transistor is connected between a power line and a drain terminal of a first transistor so that a power-supply voltage, namely the fixed voltage required for the compensation of the threshold voltage, is supplied by the power line via a fifth transistor and not by a signal line. Thus, a sufficient length of time for the threshold voltage compensation period can be maintained, and a second transistor of each pixel can accurately be compensated for threshold voltage irregularities.
摘要:
A pixel circuit is disposed where a scan line arranged in a row direction to supply a control signal and a data line arranged in a column direction to supply a video signal intersect each other. The pixel circuit includes: a sampling transistor; a drive transistor; a capacitor connected between the current path end of the sampling transistor and the gate of the drive transistor; and a light-emitting device connected to the current path end of the drive transistor. The pixel circuit connects the mobility with negative feedback during a mobility connection period.
摘要:
When a current-writing type pixel circuit is made, it involves a greater number of transistors and TFTs occupy much of the area of the pixel circuit. To alleviate this problem, two pixel circuits (P1, P2) have a first scanning TFT (14), a current-voltage conversion TFT (16), respective second scanning TFTs (15-1, 15-2), capacitors (13-1,13-2), and drive TFTs (12-1, 12-2) for OLED including organic EL elements (11-2, 11-2) of two pixels, for example, in a row direction. In each of the pixel circuits, the first scanning TFT (14) handling a large amount of current (Iw) as compare with current flowing through the OLED (11-2, 11-2), and the current-voltage conversion TFT (16) are shared between two pixels.
摘要:
Herein disclosed a display apparatus including: a pixel array having a matrix of pixel circuits each including respective electrooptical elements for determining a display brightness level and respective drive circuits for driving the electrooptical elements; wherein adjacent two of the pixel circuits are paired with each other, and each of the drive circuits of the adjacent two pixel circuits includes at least one transistor having a low-concentration source/drain region or an offset region of an offset gate structure, the electrooptical elements and the drive circuits of the adjacent two pixel circuits being laid out such that a line interconnecting a drain region and a source region of the at least one transistor extends parallel to a direction of pixel columns of the pixel circuits of the pixel array.
摘要:
A driving circuit for driving an organic electroluminescence light emitting portion includes: a driving transistor of the n channel type having source/drain regions, a channel formation region and a gate electrode; an image signal writing transistor having source/drain regions, a channel formation region and a gate electrode; and a capacitor element. A first voltage for supplying current toward the organic electroluminescence light emitting portion through the driving transistor and a second voltage for preventing a potential difference between the second node and a cathode electrode provided on the organic electroluminescence light emitting portion from exceeding a threshold voltage of the organic electroluminescence light emitting portion are selectively applied from the power supply section to the first one of the source/drain regions of the driving transistor. An LDD (Lightly Doped Drain) structure is formed adjacent the first one of the source/drain regions of the driving transistor.
摘要:
Herein disclosed a display apparatus including: a pixel array having a matrix of pixel circuits each including respective electrooptical elements for determining a display brightness level and respective drive circuits for driving the electrooptical elements; wherein adjacent two of the pixel circuits are paired with each other, and each of the drive circuits of the adjacent two pixel circuits includes at least one transistor having a low-concentration source/drain region or an offset region of an offset gate structure, the electrooptical elements and the drive circuits of the adjacent two pixel circuits being laid out such that a line interconnecting a drain region and a source region of the at least one transistor extends parallel to a direction of pixel columns of the pixel circuits of the pixel array.
摘要:
Disclosed herein is a display apparatus, including: a pixel array section wherein a plurality of pixel circuits each including an electro-optical element, a driving transistor, a sampling transistor and a capacitor are disposed in a matrix; a dependence cancellation section configured to negatively feed back, within a correction period before said electro-optical element emits light in a state wherein the image signal is written by said sampling transistor, drain-source current of said driving transistor to the gate input side of said driving transistor to cancel the dependence of the drain-source current of said driving transistor on the mobility; and a scanning section configured to use an AC power supply as a power supply to a last stage buffer of an output circuit to produce a scanning signal which defines the correction period.
摘要:
Disclosed herein is a method for manufacturing an organic electroluminescence display including multilayer structures that are each formed in a respective one of pixel areas in an effective area of a substrate and are each formed by a lower electrode, an organic layer, and an upper electrode, the organic electroluminescence display having a common electrode that electrically connects the pixel areas, the method including the steps of: forming a protective electrode and an outer-peripheral electrode that are electrically connected to the common electrode; forming the multilayer structures; and carrying out film deposition treatment involving electrification of the substrate.
摘要:
Herein disclosed a display apparatus including: a pixel array having a matrix of pixel circuits each including respective electrooptical elements for determining a display brightness level and respective drive circuits for driving the electrooptical elements; wherein adjacent two of the pixel circuits are paired with each other, and each of the drive circuits of the adjacent two pixel circuits includes at least one transistor having a low-concentration source/drain region or an offset region of an offset gate structure, the electrooptical elements and the drive circuits of the adjacent two pixel circuits being laid out such that a line interconnecting a drain region and a source region of the at least one transistor extends parallel to a direction of pixel columns of the pixel circuits of the pixel array.