Abstract:
An electronic component body includes an internal electrode that is partially extended to a surface of the electronic component body and is connected to an external electrode including a conductive material-containing resin layer including a conductive material and a resin layer and a plated layer covering the conductive material-containing resin layer. The conductive material-containing resin layer includes metal particles as the conductive material, and the plated layer extends from the surface of the conductive material-containing resin layer into the conductive material-containing resin layer such that the plated layer coats at least some of the metal particles.
Abstract:
A method for manufacturing a chip ceramic electronic component that includes an outer electrode including a glass-free sintered layer including no glass. A glass-free conductive paste including a nickel powder, a metal powder, such as tin, having a melting point of lower than about 500° C., and a thermosetting resin, and not including glass, is applied to cover a portion of a surface of a ceramic body. The ceramic body to which the glass-free conductive paste has been applied is subjected to a heat treatment at a temperature higher than or equal to a temperature about 400° C. higher than the curing temperature of the thermosetting resin. The thermosetting resin is thermally decomposed or burned such that little or none remains, and the nickel powder and metal powder having a melting point of lower than about 500° C. are sintered to form a unified sintered metal body.
Abstract:
An outer electrode includes a glass-free sintered layer containing no glass. A glass-free conductive paste is provided and includes a conductive metal powder and a thermosetting resin, the conductive metal powder including an alloy of tin and at least one of copper and nickel, and the glass-free conductive paste containing no glass. This composition is applied to cover a portion of a surface of a ceramic body. Then the ceramic body to which the glass-free conductive paste has been applied is subjected to heat treatment at a temperature of about 600° C., higher than or equal to a temperature about 400° C. higher than the curing temperature of the thermosetting resin. By the heat treatment, the thermosetting resin is subjected to thermal decomposition or combustion and thus little of the thermosetting resin remains, and the conductive metal powder is sintered to form a unified sintered metal body.
Abstract:
A multilayer ceramic electronic component includes a ceramic body and outer electrodes on two end surfaces of the ceramic body. Each of the outer electrodes includes a base electrode layer that is on the ceramic body and includes a sintered metal and glass, and a conductive resin layer that is on the base electrode layer and includes a metal filler and a resin. When a maximum thickness of the conductive resin layers that respectively lie on end surfaces of the ceramic body is denoted as T1 and when a maximum thickness of conductive resin layers adjacent to a first main surface and second main surface of the ceramic body or a first side surface or a second side surface of the ceramic body is denoted as T2, T1/T2 is about 2.4 or more.
Abstract:
A multilayer ceramic electronic component includes a ceramic element assembly and outer electrodes provided on respective end surfaces of the ceramic element assembly. Each outer electrode includes an underlying electrode layer that is provided on the ceramic element assembly and that includes a sintered metal and glass and a conductive resin layer that is provided on the underlying electrode layer and that includes a metal filler and a resin. The underlying electrode layer satisfies at least one condition of a condition that a maximum exposure length of the glass exposed at the interface between the underlying electrode layer and the conductive resin layer is about 3.8 μm or less and a condition that an exposure rate of the glass exposed at the interface between the underlying electrode layer and the conductive resin layer is about 10.1% or less.
Abstract:
A multilayer ceramic electronic component includes a multilayer body including a plurality of stacked ceramic layers and a plurality of stacked inner electrode layers, and outer electrodes on end surfaces of the multilayer body. The outer electrodes include underlying electrode layers on the end surfaces, conductive resin layers that cover the underlying electrode layers, and plating layers that cover the conductive resin layers. The underlying electrode layers are joined to the plating layers in connecting portions without the conductive resin layers interposed between the underlying electrode layers and the plating layers.
Abstract:
A multilayer ceramic electronic component includes a ceramic element body including internal electrodes and external electrodes electrically connected to respective internal electrodes. Each of the external electrodes includes a sintered metal layer including glass and metal and a conductive resin layer including resin and metal particles. In a cross section of the multilayer ceramic capacitor, at an interface between the sintered metal layer and the conductive resin layer, recesses having a shape in which a dimension of an inner portion is larger than a dimension of an inlet are present, and L1/L2 is about 0.2 or more and about 1.5 or less, where L1 is a length along the interface at which the glass of the sintered metal layer is exposed at the interface, and L2 is a length along the interface at which the metal of the sintered metal layer is exposed at the interface.
Abstract:
A ceramic electronic component includes a rectangular or substantially rectangular parallelepiped-shaped stack in which a ceramic layer and an internal electrode are alternately stacked and an external electrode provided on a portion of a surface of the stack and electrically connected to the internal electrode. The external electrode includes an inner external electrode covering a portion of the surface of the stack and including a mixture of a resin component and a metal component and an outer external electrode covering the inner external electrode and including a metal component. The inner external electrode includes a plurality of holes. An average opening diameter of the plurality of holes is not greater than about 2.5 μm. Some or all of the plurality of holes are embedded with the metal component of the outer external electrode.
Abstract:
A multilayer ceramic capacitor includes a multilayer body including a dielectric layer and an inner electrode layer alternately laminated, an outer electrode layer on each of two end surfaces at both ends in a length direction perpendicular to a lamination direction of the multilayer body and covering end surface sides of two main surfaces at both ends in the lamination direction and end surface sides of two side surfaces in the width direction and including a base electrode layer connected to the inner electrode layer, and a bump on each of the two end surface sides to hold therebetween the base electrode layer, covering the main surface side, and including a resin and a metal. In each bump, an end surface-side portion near the end surface on the side where the bump is located, projects more than a central portion of the bump toward an outside in the lamination direction.
Abstract:
A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrode layers, outer electrode layers on end surfaces of the multilayer body at opposite ends in a longitudinal direction and covering end surface sides of each of principal surfaces of the multilayer body at opposite ends in a laminating direction and end surface sides of each of side surfaces at opposite ends in a width direction and bumps on the end surface sides of one principal surface of the multilayer body such that the outer electrode layers covering the one principal surface are sandwiched between the bumps and the one principal surface. Each bump includes copper covering an area of about 50% or more and about 96% or less in a cross section through widthwise centers of the bumps and extending in the laminating direction and the longitudinal direction.