Abstract:
A multilayer ceramic electronic component includes a ceramic element body including internal electrodes and external electrodes electrically connected to respective internal electrodes. Each of the external electrodes includes a sintered metal layer including glass and metal and a conductive resin layer including resin and metal particles. In a cross section of the multilayer ceramic capacitor, at an interface between the sintered metal layer and the conductive resin layer, recesses having a shape in which a dimension of an inner portion is larger than a dimension of an inlet are present, and L1/L2 is about 0.2 or more and about 1.5 or less, where L1 is a length along the interface at which the glass of the sintered metal layer is exposed at the interface, and L2 is a length along the interface at which the metal of the sintered metal layer is exposed at the interface.
Abstract:
A multilayer ceramic capacitor includes a ceramic element body including internal electrodes therein. External electrodes are provided on end surfaces of the ceramic element body and electrically connected to exposed portions of respective ones of the internal electrodes. Each of the external electrodes includes a sintered metal layer, a conductive resin layer, and a plating layer. In a cross section including a first interface between the sintered metal layer and the conductive resin layer, the sintered metal layer includes a plurality of recesses each including an inlet extending along the first interface and an inner portion extending from the first interface into the sintered metal layer, each of the recesses having a shape in which a dimension of the inner portion is larger than a dimension of the inlet measured along the first interface, and in a cross section including a second interface between the conductive resin layer and the plating layer, a number of the metal particles exposed from the conductive resin layer in a portion of the second interface with a length of about 1 mm is 50 to 250.
Abstract:
A ceramic electronic component includes a rectangular or substantially rectangular parallelepiped-shaped stack in which a ceramic layer and an internal electrode are alternately stacked and an external electrode provided on a portion of a surface of the stack and electrically connected to the internal electrode. The external electrode includes an inner external electrode covering a portion of the surface of the stack and including a mixture of a resin component and a metal component and an outer external electrode covering the inner external electrode and including a metal component. A volume occupied by the resin component in the inner external electrode is within a prescribed range.
Abstract:
An outer electrode includes a glass-free sintered layer containing no glass. A glass-free conductive paste is provided and includes a conductive metal powder and a thermosetting resin, the conductive metal powder including an alloy of tin and at least one of copper and nickel, and the glass-free conductive paste containing no glass. This composition is applied to cover a portion of a surface of a ceramic body. Then the ceramic body to which the glass-free conductive paste has been applied is subjected to heat treatment at a temperature of about 600° C., higher than or equal to a temperature about 400° C. higher than the curing temperature of the thermosetting resin. By the heat treatment, the thermosetting resin is subjected to thermal decomposition or combustion and thus little of the thermosetting resin remains, and the conductive metal powder is sintered to form a unified sintered metal body.
Abstract:
A conductive paste includes a conductive metal powder and a curable resin. The conductive metal powder includes Ag, Cu, and Ni. In the conductive metal powder, a mass ratio of Ag is about 3.0 wt % or more and about 10.0 wt % or less, a mass ratio of Cu is about {(1−mass ratio of Ag/100)×70} wt % or more and about {(1−mass ratio of Ag/100)×95} wt % or less, and a mass ratio of Ni is about {(1−mass ratio of Ag/100)×5} wt % or more and about {(1−mass ratio of Ag/100)×30} wt % or less.
Abstract:
In a multilayer ceramic capacitor, outer electrodes include base electrode layers including a conductive metal and a glass component on a ceramic multilayer body, conductive resin layers including a thermosetting resin and a metal component on the base electrode layers such that exposed portions of the base electrode layers are exposed at least at one corner on one end surface side of the ceramic multilayer body and at least at one corner on the other end surface side thereof, and plating layers on the conductive resin layers and the exposed portions of the base electrode layers. The exposed portions of the base electrode layers are in direct contact with the plating layers at least at one corner on the one end surface side of the ceramic multilayer body and at least at one corner on the other end surface side thereof.
Abstract:
A ceramic electronic component includes a ceramic body, an inner electrode, an outer electrode, and a connecting portion. The inner electrode is disposed inside the ceramic body. The end portion of the inner electrode extends to a surface of the ceramic body. The outer electrode is disposed on the surface of the ceramic body so as to cover the end portion of the inner electrode. The outer electrode includes a resin and a metal. The connecting portion is disposed so as to extend from an inside of the outer electrode to an inside of the ceramic body. In a portion of the surface of the ceramic body on which the outer electrode is disposed, the length of the connecting portion that extends in a direction in which the inner electrode is extends about 2.4 μm or more.
Abstract:
A multilayer ceramic capacitor includes a multilayer body including dielectric layers and internal electrode layers alternately laminated on one another, outer electrode layers on end surfaces of the multilayer body at opposite ends in a longitudinal direction and covering end surface sides of principal surfaces of the multilayer body at opposite ends in a laminating direction and end surface sides of side surfaces at opposite ends with respect to a width direction, and bumps on the end surface sides of one of the principal surfaces of the multilayer body such that the outer electrode layers covering the one principal surface are sandwiched between the bumps and the one principal surface. Each of the bumps includes tin regions, metal regions including copper, and silver regions including silver.
Abstract:
A method for manufacturing a chip ceramic electronic component that includes an outer electrode including a glass-free sintered layer including no glass is provided. A glass-free conductive paste including a copper-containing metal powder and a thermosetting resin, and not including glass, is applied to cover a portion of a surface of a ceramic body. Then the ceramic body to which the glass-free conductive paste has been applied is subjected to a heat treatment at a temperature higher than or equal to a temperature about 400° C. higher than the curing temperature of the thermosetting resin. By the heat treatment, the thermosetting resin is thermally decomposed or burned and thus the thermosetting resin does not remain, and the metal powder is sintered to form a unified sintered metal body.
Abstract:
A method for manufacturing a chip ceramic electronic component that includes an outer electrode including a glass-free sintered layer including no glass is provided. A glass-free conductive paste including a copper-containing metal powder and a thermosetting resin, and not including glass, is applied to cover a portion of a surface of a ceramic body. Then the ceramic body to which the glass-free conductive paste has been applied is subjected to a heat treatment at a temperature higher than or equal to a temperature about 400° C. higher than the curing temperature of the thermosetting resin. By the heat treatment, the thermosetting resin is thermally decomposed or burned and thus the thermosetting resin does not remain, and the metal powder is sintered to form a unified sintered metal body.