Super-rapid three-dimensional topography measurement method and system based on improved fourier transform contour technique

    公开(公告)号:US11029144B2

    公开(公告)日:2021-06-08

    申请号:US16496815

    申请日:2018-02-26

    Abstract: A super-rapid three-dimensional measurement method and system based on an improved Fourier transform contour technique is disclosed. The method comprises: firstly calibrating a measurement system to obtain calibration parameters, then cyclically projecting 2n patterns into a measured scene using a projector, wherein n patterns are binary sinusoidal fringes with different high frequency, and the other n patterns are all-white images with the values of 1, and projecting the all-white images between every two binary high-frequency sinusoidal fringes, and synchronously acquiring images using a camera; and then performing phase unwrapping on wrapped phases to obtain initial absolute phases, and correcting the initial absolute phases, and finally reconstructing a three-dimensional topography of the measured scene by exploiting the corrected absolute phases and the calibration parameters to obtain 3D spatial coordinates of the measured scene in a world coordinate system, thereby accomplishing three-dimensional topography measurement of an object. In this way, the precision of three-dimensional topography measurement is ensured, and the speed of three-dimensional topography measurement is improved.

    Deep learning-based temporal phase unwrapping method for fringe projection profilometry

    公开(公告)号:US11906286B2

    公开(公告)日:2024-02-20

    申请号:US17280464

    申请日:2019-07-05

    CPC classification number: G01B11/25 G06N3/049 G06N3/08

    Abstract: The invention discloses a deep learning-based temporal phase unwrapping method for fringe projection profilometry. First, four sets of three-step phase-shifting fringe patterns with different frequencies (including 1, 8, 32, and 64) are projected to the tested objects. The three-step phase-shifting fringe images acquired by the camera are processed to obtain the wrapped phase map using a three-step phase-shifting algorithm. Then, a multi-frequency temporal phase unwrapping (MF-TPU) algorithm is used to unwrap the wrapped phase map to obtain a fringe order map of the high-frequency phase with 64 periods. A residual convolutional neural network is built, and its input data are set to be the wrapped phase maps with frequencies of 1 and 64, and the output data are set to be the fringe order map of the high-frequency phase with 64 periods. Finally, the training dataset and the validation dataset are built to train and validate the network. The network makes predictions on the test dataset to output the fringe order map of the high-frequency phase with 64 periods. The invention exploits a deep learning method to unwrap a wrapped phase map with a frequency of 64 using a wrapped phase map with a frequency of 1 and obtain an absolute phase map with fewer phase errors and higher accuracy.

    A MINIATURIZED, LOW-COST, MULTI-CONTRAST LABEL-FREE MICROSCOPE IMAGING SYSTEM

    公开(公告)号:US20230359010A1

    公开(公告)日:2023-11-09

    申请号:US18026276

    申请日:2021-08-18

    CPC classification number: G02B21/14 G02B21/0008 G02B21/0032 G02B21/008

    Abstract: The invention discloses a miniaturized, low-cost, multi-contrast label-free microscopic imaging system. The imaging system is based on an inverted microscopic structure, a highly integrated optical system is designed by adopting a micro lens having a fixed focal length, and a complex optical system of a traditional microscope system is replaced, such that the whole microscope is highly integrated. The system uses a programmable LED array as an illumination light source the LED array is controlled by a computer to display different illumination modes, six imaging functions of a bright field, a dark field a rainbow dark field, Rheinberg optical dyeing, differential phase contrast, and quantitative phase imaging are achieved; and diversified unmarked imaging methods are provided for biological applications. The invention provides a matching control system, which can realize system hardware control and algorithm execution and display, comprises functions such as illumination control, camera parameter adjustment quantitative phase reconstruction recovery, two-dimensional/three-dimensional result display, and quantitative profile analysis, and can realize diversified information obtaining and analysis of unmarked samples.

    3D diffraction tomography microscopy imaging method based on LED array coded illumination

    公开(公告)号:US11781966B2

    公开(公告)日:2023-10-10

    申请号:US17289605

    申请日:2019-07-05

    Abstract: The present invention discloses a three-dimensional diffraction tomography microscopy imaging method based on LED array coded illumination. Firstly, acquiring the raw intensity images, three sets of intensity image stacks are acquired at different out-of-focus positions by moving the stage or using electrically tunable lens. And then, after acquiring the intensity image stacks of the object to be measured at different out-of-focus positions, the three-dimensional phase transfer function of the microscopy imaging system with arbitrary shape illumination is derived. Further, the three-dimensional phase transfer function of the microscopic system under circular and annular illumination with different coherence coefficients is obtained as well, and the three-dimensional quantitative refractive index is reconstructed by inverse Fourier transform of the three-dimensional scattering potential function. The scattering potential function is converted into the refractive index distribution. Thus, the quantitative three-dimensional refractive index distribution of the test object is obtained. The invention realizes high-resolution and high signal-to-noise ratio 3D diffraction tomography microscopic imaging of cells, tiny biological tissues and other samples.

    3D DIFFRACTION TOMOGRAPHY MICROSCOPY IMAGING METHOD BASED ON LED ARRAY CODED ILLUMINATION

    公开(公告)号:US20210372916A1

    公开(公告)日:2021-12-02

    申请号:US17289605

    申请日:2019-07-05

    Abstract: The present invention discloses a three-dimensional diffraction tomography microscopy imaging method based on LED array coded illumination. Firstly, acquiring the raw intensity images, three sets of intensity image stacks are acquired at different out-of-focus positions by moving the stage or using electrically tunable lens. And then, after acquiring the intensity image stacks of the object to be measured at different out-of-focus positions, the three-dimensional phase transfer function of the microscopy imaging system with arbitrary shape illumination is derived. Further, the three-dimensional phase transfer function of the microscopic system under circular and annular illumination with different coherence coefficients is obtained as well, and the three-dimensional quantitative refractive index is reconstructed by inverse Fourier transform of the three-dimensional scattering potential function. The scattering potential function is converted into the refractive index distribution. Thus, the quantitative three-dimensional refractive index distribution of the test object is obtained. The invention realizes high-resolution and high signal-to-noise ratio 3D diffraction tomography microscopic imaging of cells, tiny biological tissues and other samples.

Patent Agency Ranking