Abstract:
In one embodiment, a flow cytometer is disclosed having a compact light detection module. The compact light detection module includes an image array with a transparent block, a plurality of micro-mirrors in a row coupled to a first side of the transparent block, and a plurality of filters in a row coupled to a second side of the transparent block opposite the first side. Each of the plurality of filters reflects light to one of the plurality of micro-mirrors and passes light of a differing wavelength range and each of the plurality of micro-mirrors reflects light to one of the plurality of filters, such that incident light into the image array zigzags back and forth between consecutive filters of the plurality of filters and consecutive micro-mirrors of the plurality of micro-mirrors. A radius of curvature of each of the plurality of micro-mirrors images the fiber aperture onto the odd filters and collimates the light beam on the even filters.
Abstract:
The invention relates to a method for tracking the amplification of a sequence of nucleotides in a sample (10). The sample is placed between a light source (12) and an image sensor (16). Under the effect of amplification reagents, mixed with the sample, a nucleotide sequence, called the target sequence, is replicated iteratively, amplifying the target sequence. The method includes the acquisition of an image representative of the formation of a precipitate in the sample under the effect of the amplification, on the basis of which an image of interest is formed. The application of a statistical indicator to the image of interest allows an indicator of the amplification of the target sequence to be determined.
Abstract:
Microfluidic devices, systems and techniques in connection with particle sorting in liquid, including cytometry devices and techniques and applications in chemical or biological testing and diagnostic measurements.
Abstract:
Microfluidic devices, systems and techniques in connection with particle sorting in liquid, including cytometry devices and techniques and applications in chemical or biological testing and diagnostic measurements.
Abstract:
A chip-scale optical approach to performing multi-target detection is based on molecular biosensing using fiber-optic based fluorescence or light scattering detection in liquid-core waveguides. Multiplexing methods are capable of registering individual nucleic acids and other optically responsive particles, and are ideal for amplification-free detection in combination with the single molecule sensitivity of optofluidic chips. This approach overcomes a critical barrier to introducing a new integrated technology for amplification-free molecular diagnostic detection. Specific examples of liquid-core optical waveguides and multi-mode interferometers are described; however, they can be implemented in a number of different ways as long as a series of excitation spots is created whose spacing varies with the excitation wavelength.
Abstract:
A method and apparatus of multi-dye analysis of particles using flow cytometer. The method includes dying particles to be detected using two or more dyes; urging the particles through a capillary in a non-uniform flow; exciting a first of the particles within the capillary using a multiphoton excitation laser beam causing the two or more dyes each to fluoresce thereby producing a first output signal and a second output signal respectively; and detecting the first output signal and the second output signal. A second of the particles within the capillary being excited using the multiphoton excitation laser beam causing the two or more dyes each to fluoresce thereby producing a third output signal and a forth output signal respectively. The method finally includes comparing a ratio of the first output signal and the second output signal to a ratio of the third output signal and the forth output signal to detect a desired change in the particles.
Abstract:
Devices and methods for screening emissive properties of a cell, such as the resistance to photobleaching or other photophysical property. In one example, a device may include a microfluidic reservoir having at least an input channel for receiving the cell, a main channel fluidly coupled with the input channel, at least a first output channel and a second output channel, the first and second output channels fluidly coupled with the main channel; and a multibeam interrogation section generating a plurality of light beams impinging upon the main channel of the microfluidic reservoir. As a cell passes from the input channel through the main channel of the microfluidic reservoir, the cell is exposed to the plurality of light beams thereby generating emissions that are received by a signal processing section. A cell trapping section selectively diverts the cell to the second output channel if the cell contains desired emissive properties.
Abstract:
A system according to one embodiment includes a light source for generating light fringes; a sampling mechanism for directing a particle through the light fringes; and at least one light detector for detecting light scattered by the particle as the particle passes through the light fringes. A method according to one embodiment includes generating light fringes using a light source; directing a particle through the light fringes; and detecting light scattered by the particle as the particle passes through the light fringes using at least one light detector.
Abstract:
Aerosol and hydrosol particle detection systems without knowledge of a location and velocity of a particle passing through a volume of space, are less efficient than if knowledge of the particle location is known.An embodiment of a particle position detection system capable of determining an exact location of a particle in a fluid stream is discussed. The detection system may employ a patterned illuminating beam, such that once a particle passes through the patterned illuminating beam, a light scattering is produced. The light scattering defines a temporal profile that contains measurement information indicative of an exact particle location.However, knowledge of the exact particle location has several advantages. These advantages include correction of systematic particle measurement errors due to variability of the particle position within the sample volume, targeting of particles based on position, capture of particles based on position, reduced system energy consumption and reduced system complexity.
Abstract:
A particle detection system that images and detects particles in a fluid flow stream through use of detector array(s) is described. The detection system may include light source arrays that may selectively illuminate a particle in a fluid stream. The detection system may also include a detector array employing smart binning to read the measured signals. The smart binning of the detector array may be achieved through knowledge of an exact particle location provided by a position sensitive detector. The detector array(s) may be low cost based on intelligence built into the system. This particle detection system may be particularly useful for detection and discrimination of different particle types since the read-out of the particle signals can be accomplished with low noise and can be flexible enough to optimize the read out measurements for each particle. The particle detection system may be used, for example, in early warning contamination detection systems and manufacturing processes.