Abstract:
A system for optimizing signal quality in an optical communication system is provided including a transmitter for converting digital signals to optical signals, the transmitter including a transmitter digital signal processing chip including a pre-distortion logic and a transmitter look-up table (LUT). A receiver is operatively coupled to the transmitter for receiving and converting the optical signals from the transmitter to digital signals. The receiver includes a receiver digital signal processing chip including a correction logic and a receiver look-up table (LUT). The transmitter LUT is constructed by scaling the receiver LUT by a weight factor and is iteratively updated based on a weighted sum of the receiver LUT.
Abstract:
A computer implemented method for a cyclic (forward-backward) decoding for a forward error-correction FEC scheme includes decoding a given k−1th codeword in a block code of length N in an optical communication system, forwarding M symbols' enhanced log likelihood ratios LLRs produced by decoding the k−1th codeword, decoding the kth codeword together with forwarded M symbols' enhanced LLRS, and feeding backward, to the initial step i) decoding, corresponding overlapped M symbols' enhanced LLRs for decoding of the k−1th codeword again.
Abstract:
A system for optimizing signal quality in an optical communication system is provided including a transmitter for converting digital signals to optical signals, the transmitter including a transmitter digital signal processing chip including a pre-distortion logic and a transmitter look-up table (LUT). A receiver is operatively coupled to the transmitter for receiving and converting the optical signals from the transmitter to digital signals. The receiver includes a receiver digital signal processing chip including a correction logic and a receiver look-up table (LUT). The transmitter LUT is constructed by scaling the receiver LUT by a weight factor and is iteratively updated based on a weighted sum of the receiver LUT.
Abstract:
A system for centralized automatic bias control for a plurality of modulators, including a coupler for coupling output of each of the plurality of modulators to generate a combined modulator output. A pilot insertion device inserts a pilot tone into each of the plurality of modulators such that a different pilot tone frequency is inserted for each of the plurality of modulators. A monitoring device iteratively monitoring power (Pt) of each inserted pilot tone over time to determine whether a current modulator bias is optimal for each of the plurality of modulators, and an adjuster device iteratively adjusts the modulator bias for each of the plurality of modulators for which the current modulator bias is determined to be sub-optimal until a threshold condition has been met.
Abstract:
The invention is directed to a novel computer implemented method for finding a modulation format that has better receiver sensitivity than modulation formats that are currently being used, with a correlated symbol modulation in which neighboring symbols are coded and decoded together to increase receiver sensitivity.
Abstract:
An optical communication system includes a digital signal processer coupled to the coherent receiver, said coherent receiver including a nonlinearity compensation module for compensating for nonlinear effects in fiber in the optical link for increasing capacity or transmission distance of the fiber, the nonlinearity compensation module includes a spectral slicing of the signal into bands, computing nonlinear interaction between the bands with parameters opposite to those of the fiber to reverse the non-linear effects in the fiber, and only certain nonlinear interactions between bands are considered thereby reducing complexity of the nonlinearity compensation.
Abstract:
A method includes evaluating an optical signal spectrum for estimated filtering parameters of an optical spectral filtering device for shaping optical signal spectrum, determining a feedback for fine tuning the optical spectral filtering device for nonlinearity tolerance enhancement in the optical transmission system, responsive to received optical signal quality in the optical signal spectrum; and using the feedback to adjust said optical spectral filtering device for predetermined shaping and predetermined fiber nonlinearity tolerance in the optical transmission system.
Abstract:
Aspects of the present disclosure are directed to systems, methods, and structures providing for the accurate measurement of guided acoustic-wave Brillouin scattering in optical fiber transmission systems and facilities.
Abstract:
Aspects of the present disclosure describe methods for reducing guided acoustic wave Brillouin (GAWBS) noise in an optical fiber that may be included in an optical communications system by reducing the polarization diffusion length of the fiber by increasing the birefringence of the optical fiber, the increased birefringence of the optical fiber being increased with respect to its average magnitude. Additionally, the polarization diffusion length is reduced by reducing the coherence length of birefringence of the optical fiber.
Abstract:
An unrepeatered transmission system includes a receiver coupled to a receive span; a transmitter coupled to the receive span; and a plurality of cascaded amplifiers in the receive span with dedicated fiber cores to supply one or more optical pumps from the receiver to each amplifier, wherein the plurality of cascaded amplifiers increase system reach by increasing the length of a back span in an unrepeatered link.