Abstract:
Provided is an LDH-like compound separator for secondary zinc batteries that includes a porous substrate made of a polymer material; and an LDH-like compound plugging pores in the porous substrate. The LDH-like compound separator has a dendrite buffer layer therein, the dendrite buffer layer being at least one selected from the group consisting of: (i) a pore-rich internal porous layer in the porous substrate, the internal porous layer being free from the LDH-like compound or deficient in the LDH-like compound; (ii) a releasable interfacial layer, which is provided by two adjacent layers constituting part of the LDH-like compound separator being in releasable contact with each other; and (iii) an internal gap layer being free from the LDH-like compound and the porous substrate, which is provided by two adjacent layers constituting part of the LDH-like compound separator being formed apart from each other.
Abstract:
Provided is a layered double hydroxide (LDH) separator including a porous substrate made of a polymeric material; and a hydroxide-ion conductive layered compound being a LDH and/or a LDH-like compound with which pores of the porous substrate are plugged. The LDH separator has a mean porosity of 0.03% to less than 1.0%.
Abstract:
Provided is a layered-double-hydroxide-(LDH) containing composite material including a porous substrate and a high density LDH-containing functional layer on and/or in the porous substrate. The LDH-containing composite material of the present invention includes the porous substrate and the functional layer formed on and/or in the porous substrate. The functional layer contains a layered double hydroxide represented by the general formula M2+1-xM3+x(OH)2An−x/n.mH2O (where M2+ represents a divalent cation, M3+ represents a trivalent cation, An− represents an n-valent anion, n represents an integer not less than 1, x represents a value of 0.1 to 0.4, and m represents a value not less than 0) and has water impermeability.
Abstract:
Provided is a battery including a positive electrode; a negative electrode; an electrolytic solution being an aqueous alkali metal hydroxide solution; and a layered double hydroxide (LDH)-like compound provided so as to be in contact with the electrolytic solution. A metal compound containing at least one metal element constituting the LDH-like compound is dissolved in the electrolytic solution such that erosion of the LDH-like compound by the electrolytic solution is suppressed.
Abstract:
There is provided a secondary zinc battery including: a unit cell including; a positive-electrode plate including a positive-electrode active material layer and a positive-electrode collector; a negative-electrode plate including a negative-electrode active material layer containing zinc and a negative-electrode collector; an LDH separator covering or wrapping around the entire negative-electrode active material layer; and an electrolytic solution. The positive-electrode collector has a positive-electrode collector tab extending from one edge of the positive-electrode active material layer, and the negative-electrode collector has a negative-electrode collector tab extending from the opposite edge of the negative-electrode active material layer and beyond a vertical edge of the LDH-like compound separator. The unit cell can thereby collects electricity from the positive-electrode collector tab and the negative-electrode collector tab that are disposed at opposite edges of the unit cell. The LDH-like compound separator has at least two continuous closed edges.
Abstract:
Provided is an LDH-like compound separator that includes a porous substrate made of a polymer material and a layered double hydroxide (LDH)-like compound plugging pores in the porous substrate, and has a linear transmittance of 1% or more at a wavelength of 1000 nm.
Abstract:
Provided is an LDH separator including a porous substrate and a mixture of a layered double hydroxide (LDH)-like compound and In(OH)3, which fills up pores of the porous substrate. The LDH-like compound is a hydroxide and/or an oxide with a layered crystal structure containing Mg, Ti, Y, and optionally Al and/or In.
Abstract:
There is provided an LDH separator including a porous substrate and a layered double hydroxide (LDH)-like compound that fills up pores of the porous substrate. The LDH-like compound is a hydroxide and/or an oxide with a layered crystal structure, containing (i) Ti, Y, and optionally Al and/or Mg, and (ii) at least one additive element M selected from the group consisting of In, Bi, Ca, Sr, and Ba.
Abstract:
Provided is a hydroxide ion-conductive separator including a porous substrate and a layered double hydroxide (LDH)-like compound filling pores of the porous substrate, wherein the LDH-like compound is a hydroxide and/or an oxide with a layered crystal structure, containing: Mg; and one or more elements, which include at least Ti, selected from the group consisting of Ti, Y, and Al.
Abstract:
There is provided a functional layer including a layered double hydroxide (LDH). The functional layer includes a first layer with a thickness of 0.10 μm or more, the first layer being composed of fine LDH particles having a diameter of less than 0.05 μm, and a second layer composed of large LDH particles having a mean particle diameter of 0.05 μm or more, the second layer being an outermost layer provided on the first layer.