摘要:
There is provided a silicon carbide substrate composed of silicon carbide, including encapsulated regions inside, which form incoherent boundaries between the silicon carbide and the encapsulated regions, wherein propagation of stacking faults in the silicon carbide is blocked.
摘要:
To provide a silicon carbide substrate having at least one or more main surfaces, including: a plurality of encapsulated regions inside, wherein the plurality of encapsulated regions are distributed in a direction approximately parallel to one of the main surfaces, with each encapsulated region positioned at a distance of 100 nm or more and 100 μm or less from the main surfaces to inside a substrate, and each encapsulated region having a width of 100 nm or more and 100 μm or less in a direction parallel to the main surfaces.
摘要:
Disclosed is a process for producing a secondary battery cathode material by calcining raw materials. The process is characterized by calcining the raw materials together with one or more substances, which are selected from the group consisting of hydrogen, water and water vapor, and conductive carbon and/or a substance, which can form conductive carbon by pyrolysis, added thereto. As crystals of the secondary battery cathode material obtained by this process have been controlled fine sizes, the secondary battery cathode material promotes movements of ions of an alkali metal led by lithium between the interiors of grains of the cathode material and an electrolyte to suppress polarization in an electrode reaction, and further, increases an area of contact between the positive material and a conductivity-imparting material to provide improved conductivity so that improvements are assured in voltage efficiency and specific battery capacity.
摘要:
A method for producing a cathode material for a lithium battery, characterized in that it comprises admixing a compound liberating a phosphate ion in a solution and metallic iron, and dissolving the metallic iron, followed by firing, thereby synthesizing ferric phosphate. The above method further comprising reacting a raw material mixture while grinding it down or refluxing can produce ferric phosphate cathode material having a fine particle diameter and exhibiting high activity, through a precursor before firing having a fine particle diameter.
摘要:
A method for producing a cathode material for a lithium battery, characterized in that it comprises admixing a compound liberating a phosphate ion in a solution and metallic iron, and dissolving the metallic iron, followed by firing, thereby synthesizing ferric phosphate. The above method further comprising reacting a raw material mixture while grinding it down or refluxing can produce ferric phosphate cathode material having a fine particle diameter and exhibiting high activity, through a precursor before firing having a fine particle diameter.
摘要:
A semiconductor device comprises a semiconductor substrate made of silicon carbide, a gate insulating film formed on the semiconductor substrate, and a gate electrode formed on the gate insulating film. The junction surface of the semiconductor surface joined with the gate insulating film is macroscopically parallel to a nonpolar face and microscopically comprised of the nonpolar face and a polar face. In the polar face, either a Si face or a C face is dominant. A semiconductor device comprises a semiconductor substrate comprised of silicon carbide and a gate electrode formed on the semiconductor substrate. The junction surface of the semiconductor surface joined with the electrode is macroscopically parallel to a nonpolar face and microscopically comprised of the nonpolar face and a polar face. In the polar face, either a Si face or a C face is dominant. The present invention is a semiconductor device having a silicon carbide substrate, and the electrical characteristics and the stability of the interface between the electrode and the silicon carbide or between the oxide film (insulating film) and the silicon carbide in the nonpolar face of a silicon carbide epitaxial layer can be improved.