Abstract:
In accordance with the present invention, a novel self-referencing fiber optic Raman probe is disclosed. It uses the Raman signal generated by a crystalline optical fiber to normalize the Raman signal produced by the sample in order to compensate for changes in the output power of the excitation laser light source, the coupling efficiencies of the optical fibers connecting the light source to the probe and the probe to the analyzing spectrometer, and the alignment of optical components within the probe.
Abstract:
In accordance with the present invention, an ultra-sensitive Raman chemical sensor is provided that is based on an enhanced spontaneous emission as a result of cavity quantum electrodynamic effects. More specifically, the sensor in accordance with the present invention makes use of a double resonance of a microcavity with both the excitation laser frequency and the Raman frequency. As such, the Raman shift corresponds to an integer times the free spectral range of the microcavity. Because the Raman frequency directly depends on the excitation laser's frequency, the fulfillment of the resonance condition for the excitation laser frequency guarantees that resonance with the Raman frequency is also satisfied.
Abstract:
The present invention provides a thermally compensated fluorescence decay rate temperature sensor capable of measuring the true temperature of a sample surface and its associated method of use.
Abstract:
A fiber optic evanescent absorption sensor. This invention makes use of two sources and one detection system, or one source and two detection systems, or two of each to determine a large range of absorbance with high accuracy for a fixed interaction length.
Abstract:
The present invention provides a dual-probe thermally compensated fluorescence decay rate temperature sensor capable of measuring the true temperature of a sample surface and its associated method of use.
Abstract:
The present invention provides a dual-probe thermally compensated fluorescence decay rate temperature sensor capable of measuring the true temperature of a sample surface and its associated method of use.
Abstract:
The present invention provides a dual-probe thermally compensated fluorescence decay rate temperature sensor capable of measuring the true temperature of a sample surface and its associated method of use.
Abstract:
A microlens is affixed in the far field of an optical fiber to spatially transform a beam either entering or exiting the fiber. In a first embodiment, a droplet of photo polymer is placed on the end of an optical fiber and the fiber is spun to create an artificial gravity. The droplet is cured by UV radiation during the spinning. In a second embodiment, nanoparticles are mixed into the droplet to increase the refractive index of the photo polymer. A third embodiment employs artificial gravity to attach a microsphere to the end of the optical fiber. A fourth embodiment chemically treats the surface of the microsphere so that the requirement of artificial gravity is either reduced or eliminated. In a fifth embodiment the droplet is cured under equlibrium or nonequilibrium conditions to obtain different final shapes for the lenslet. A sixth embodiment discloses fabrication of microlens arrays.