Abstract:
The present invention offers a polarization mode dispersion compensator and a compensation method for polarization mode dispersion having simple constitution and being strong against external disturbances. The polarization mode dispersion compensator, a representative example of the present invention, is provided with a compensation circuit for polarization mode dispersion, a degree of polarization measuring circuit, and a control circuit. An optical signal is input to the compensation circuit for polarization mode dispersion through an optical fiber, and after the process of compensation for polarization mode dispersion, it is output to an optical fiber. An optical coupler divides a part of the optical signal passing through the optical fiber. The degree of polarization measuring circuit finds the degree of polarization of the divided optical signal. The control circuit generates a control signal based on the degree of polarization obtained in the above, and so controls the compensation circuit for polarization mode dispersion as to make the degree of polarization maximum.
Abstract:
The technical problem disclosed concerns increase of transmission distance between inter-site transmission parts when a circuit speed is increased, and simplification of an intra-site circuit. The means to resolve the problem is as follows. An intra-site circuit connecting an intra-site information communications device 140-1 and a wavelength division multiplexing optical transmission device 147 is demultiplexed into plural low speed wavelength division multiplexing signals by a transponder 100 according to this invention, and transmitted to an inter-site optical fiber circuit 144. The signals are again multiplexed into a high-speed optical signal by a transponder 110 in a wavelength division multiplexing optical transmission device 148 on the receiving side, and transmitted to an intra-site optical fiber circuit 143-1.
Abstract:
An optical field receiver comprises an optical branching circuit for branching a received optical multilevel signal into first and second optical signals, a first optical delayed demodulator for performing delayed demodulation on the first optical signal at a delay time T (T=symbol time), a second optical delayed demodulator for performing delayed demodulation on the second optical signal at the delay time T with an optical phase difference deviating from the first optical delayed demodulator by 90°, first and second optical receivers for converting each of the delayed demodulation signals representing x and y components of complex signals output from the first and second delayed demodulators into first and second electrical signals, and a field processing unit fort generating a first reconstructed signal representing an inter-symbol phase difference or a phase angle of a received symbol from the first and second electrical signals for each symbol time T.
Abstract:
Provided is an optical multilevel transmission system, comprising at least one optical multilevel transmitter for transmitting an optical multilevel signal obtained and an optical multilevel receiver for receiving the optical multilevel signal. The received optical multilevel signal has a larger noise in an angular direction than in a radial direction. The optical multilevel receiver sets, in a symbol decision of the received optical multilevel signal demodulated on the complex plane, for positions of all or some of ideal signal points, a width in the angular direction of a decision area, to which each of the ideal signal points belongs and which is measured along a circumference of a circle centered at an origin and passing through a center of the each of the ideal signal points, larger than a width in the angular direction of a decision area defined based on a Euclidean distance.
Abstract:
Bending of an optical fiber where a heat may be generated by a high output power can be detected without using a dedicated light source. An optical communication module that outputs a continuous wave light generated by at least one light source to an optical fiber transmission line, includes: (1) a loss measurement unit that measures a loss of an amplified spontaneous emission generated by allowing the continuous wave light output from the light source to create stimulated Raman scattering in the optical fiber transmission line; (2) a fiber abnormality analyzer that detects the abnormal state of the optical fiber transmission line on the basis of loss information on the ASE measured by the loss measurement unit; and (3) a light source controller that controls a supply state of the continuous wave light from the light source on the basis of the detection of the fiber abnormality analyzer.
Abstract:
Optical receiver 300 uses two optical delay detectors 223 (set such that the delay times T are equal to symbol time and the phase differences are zero and 90 degrees) to receive an optical multilevel signal 215 and the output signals are A/D converted, thereafter subjected to retiming processes, and then subjected to a differential phase detection, thereby detecting a differential phase at a symbol center time point. In the receiver, the detected differential phase is integrated for each symbol and thereafter combined with an amplitude component obtained from a separately disposed optical intensity receiver, thereby reproducing an optical electric field. Thereafter, a wavelength dispersion compensation circuit (231) of a time period T is used to compensate for the wavelength dispersion of the transmission path. Moreover, an electric or optical Nyquist filter may be inserted to perform a band limitation, thereby enhancing the wavelength dispersion compensation effect.
Abstract:
An optical balanced receiver including an optical coupler for combining input optical information signal and optical reference signal and outputting two optical interfering signals whose phases are opposite to each other, two photodetectors for receiving the two optical interfering signals and outputting detection signals as electrical signals having the amplitudes corresponding to the interference intensities of the received optical interfering signals, a balance compensation type difference device for compensating an intensity fluctuation component added to a difference signal of the two detection signals due to the difference in amplitude and/or delay between the detection signals output from the two photodetectors in accordance with an input control signal, and outputting the compensated difference signal of the two detection signals, and a control circuit for outputting the control signal to the balance compensation type difference device.
Abstract:
An optical field receiver comprises an optical brancher that branches a received optical multilevel signal into first and second optical signals; an optical delayed detector that performs delayed detection on the first optical signal by a delayed detector with a delay time of T/2 (where T is equal to a symbol time) and a phase difference of 90 degrees; a balanced optical receiver that converts the optical signal outputted from the first delay detector to an electric signal; and an optical intensity receiver that converts the second optical signal to an electric signal; and an electric field calculating part that generates, from the output signals of the first and second optical receivers, first and second reproduced signals indicative of the phase angle and amplitude value of the received symbol represented by the complex signal in each symbol time T.
Abstract:
An optical field receiver comprises an optical brancher that branches a received optical multilevel signal into first and second optical signals; an optical delayed detector that performs delayed detection on the first optical signal by a delayed detector with a delay time of T/2 (where T is equal to a symbol time) and a phase difference of 90 degrees; a balanced optical receiver that converts the optical signal outputted from the first delay detector to an electric signal; and an optical intensity receiver that converts the second optical signal to an electric signal; and an electric field calculating part that generates, from the output signals of the first and second optical receivers, first and second reproduced signals indicative of the phase angle and amplitude value of the received symbol represented by the complex signal in each symbol time T.
Abstract:
An electric field waveform of an optical signal is precisely measured with high time resolution. Particularly, determination of inter-symbol interference has been difficult. Output light from the laser source is divided into first and second portions. The first portion is modulated by an optical modulator. The second portion is delayed by a delay line for the same quantity of delay as that of the first portion. The first and second portions are fed to a phase diversity circuit to configure a homodyne interferometer. An optical input sampling oscilloscope stabilizes a variable optical phase shifter to set an optical phase at a particular point of time to a fixed value using a pattern sync signal as a reference. An optical input sampling oscilloscope repeatedly averages optical waveforms and a CPU conducts three-dimensional display of the optical electric field waveform from which noise has been removed.