摘要:
Each of the unit cells provided on a semiconductor substrate of a solid-state imaging device comprises a first p-type well which isolates the semiconductor substrate into an n-type photoelectric conversion region, a second p-type well which is formed in the surface of the photoelectric conversion region and in which a signal scanning circuit section is formed, and a signal storage section which is comprised of a highly doped n-type layer which is formed in the surface of the photoelectric conversion region apart from the second p-type well and higher in impurity concentration than the photoelectric conversion region. The signal storage section having its part placed under a signal readout gate adapted to transfer a packet of signal charge from the storage section to the signal scanning circuit section and its part at which the potential becomes deepest located under the readout gate.
摘要:
An n/p−/p+ substrate where a p−-type epitaxial layer and an n-type epitaxial layer have been deposited on a p+-type substrate is provided. In the surface region of the n-type epitaxial layer, the n-type region of a photoelectric conversion part has been formed. Furthermore, a barrier layer composed of a p-type semiconductor region has been formed so as to enclose the n-type region of the photoelectric conversion part in a plane and reach the p−-type epitaxial layer from the substrate surface. A p-type semiconductor region has also been formed at a chip cutting part for dividing the substrate into individual devices so as to reach the p−-type epitaxial layer from the substrate surface.
摘要翻译:提供了p型外延层和n型外延层已经沉积在p +型衬底上的n / p- / p +衬底。 在n型外延层的表面区域中,形成了光电转换部的n型区域。 此外,已经形成了由p型半导体区域构成的阻挡层,以将光电转换部件的n型区域包围在平面内并从衬底表面到达p型外延层。 在芯片切割部分还形成了p型半导体区域,用于将衬底分成各个器件,从衬底表面到达p型外延层。
摘要:
A solid-state image pickup device includes a semiconductor substrate including a substrate main body having P-type impurities and a first N-type semiconductor layer provided on the substrate main body, an image pickup area including a plurality of photoelectric converters in which the plurality of photoelectric converters include second N-type semiconductor layers, the second N-type semiconductor layers being provided on a surface portion of the first N-type semiconductor layer independently of one another, and a first peripheral circuit area including a first P-type semiconductor layer formed on the first N-type semiconductor layer. The solid-state image pickup device further includes a second peripheral circuit area including a second P-type semiconductor layer formed on the first N-type semiconductor layer and connected to the substrate main body.
摘要:
A solid-state image pickup device includes a semiconductor substrate including a substrate main body having P-type impurities and a first N-type semiconductor layer provided on the substrate main body, an image pickup area including a plurality of photoelectric converters in which the plurality of photoelectric converters include second N-type semiconductor layers, the second N-type semiconductor layers being provided on a surface portion of the first N-type semiconductor layer independently of one another, and a first peripheral circuit area including a first P-type semiconductor layer formed on the first N-type semiconductor layer. The solid-state image pickup device further includes a second peripheral circuit area including a second P-type semiconductor layer formed on the first N-type semiconductor layer and connected to the substrate main body.
摘要:
An n/p−/p+ substrate where a p−-type epitaxial layer and an n-type epitaxial layer have been deposited on a p+-type substrate is provided. In the surface region of the n-type epitaxial layer, the n-type region of a photoelectric conversion part has been formed. Furthermore, a barrier layer composed of a p-type semiconductor region has been formed so as to enclose the n-type region of the photoelectric conversion part in a plane and reach the p−-type epitaxial layer from the substrate surface. A p-type semiconductor region has also been formed at a chip cutting part for dividing the substrate into individual devices so as to reach the p−-type epitaxial layer from the substrate surface.
摘要:
Each of the unit cells provided on a semiconductor substrate of a solid-state imaging device comprises a first p-type well which isolates the semiconductor substrate into an n-type photoelectric conversion region, a second p-type well which is formed in the surface of the photoelectric conversion region and in which a signal scanning circuit section is formed, and a signal storage section which is comprised of a highly doped n-type layer which is formed in the surface of the photoelectric conversion region apart from the second p-type well and higher in impurity concentration than the photoelectric conversion region. The signal storage section having its part placed under a signal readout gate adapted to transfer a packet of signal charge from the storage section to the signal scanning circuit section and its part at which the potential becomes deepest located under the readout gate.
摘要:
A solid-state image pickup device comprising a semiconductor substrate which comprises a substrate body containing P-type impurities and a first N-type semiconductor layer containing N-type impurities, the first N-type semiconductor layer being provided on the substrate body, and including a first P-type semiconductor layer which contains p-type impurities, and which is located on the substrate body, a plurality of optical/electrical conversion portions formed of second N-type semiconductor layers which are provided independently of each other in respective positions in a surface portion of the first N-type semiconductor layer, and a plurality of second P-type semiconductor layers which are formed to surround the optical/electrical conversion portions, which are provided along element isolation regions provided in respective positions in the surface portion of the first N-type semiconductor layer, and which continuously extend from the surface portion of the first N-type semiconductor layer to a surface portion of the first P-type semiconductor layer.
摘要:
A solid-state image pickup device comprising a semiconductor substrate which comprises a substrate body containing P-type impurities and a first N-type semiconductor layer containing N-type impurities, the first N-type semiconductor layer being provided on the substrate body, and including a first P-type semiconductor layer which contains p-type impurities, and which is located on the substrate body, a plurality of optical/electrical conversion portions formed of second N-type semiconductor layers which are provided independently of each other in respective positions in a surface portion of the first N-type semiconductor layer, and a plurality of second P-type semiconductor layers which are formed to surround the optical/electrical conversion portions, which are provided along element isolation regions provided in respective positions in the surface portion of the first N-type semiconductor layer, and which continuously extend from the surface portion of the first N-type semiconductor layer to a surface portion of the first P-type semiconductor layer.
摘要:
The invention is regarding to solid-state imaging device. A solid-state imaging device consistent with the present invention includes, a plurality of unit cells on a semiconductor substrate of a first conductivity type, each unit cell including a photoelectric conversion unit comprising a photodiode having a diffusion layer of a second conductivity type and a signal scanning circuit unit; a trench isolation region for isolating the photoelectric conversion unit from the signal scanning circuit unit, the trench isolation region being formed in the semiconductor substrate;a first element-isolating diffusion layer of the first conductivity type formed under a bottom face of the trench isolation region down to a position deeper than the diffusion layer of the photodiode from the surface of the semiconductor substrate.
摘要:
A readout gate electrode is selectively formed on a silicon substrate. An N-type drain region is formed at one end of the readout gate electrode, and an N-type signal storage region is formed at the other end thereof. A P+-type surface shield region is selectively epitaxial-grown on the signal storage region, and a silicide block layer is formed on the surface shield region to cover at least part of the signal storage region. A Ti silicide film is selective epitaxial-grown on the drain region.