Abstract:
The Fault Management (FM) in the Network Function Virtualization (NFV) environment may benefit from various methods. For example methods for fault escalation or de-escalation may be beneficial. A method can include requesting a change in a severity of a virtualized resource alarm. The method can also include deciding to change a severity of a virtualized resource alarm. The requesting the change in the severity can be based on the identified reason.
Abstract:
Systems, methods, apparatuses, and computer program products for coordinated scheduling of network function virtualization infrastructure (NFVI) maintenance are provided. One method includes receiving, by a network function virtualization entity, a request for scheduled maintenance of a network function virtualization infrastructure (NFVI). The method may also include determining whether one or more resources required for the maintenance of the NFVI are reserved, and sending an approval or rejection of the request for maintenance based on the determination of whether the resources are reserved.
Abstract:
A method and apparatus may include transmitting a scaling request. The scaling request comprises a request for virtualized network function expansion or virtualized network function contraction. The scaling request is transmitted to a second network node. A first domain is directed to application level details. A second domain is directed to virtualization level details. The scaling request comprises: (1) a relative target capacity that is generic to both the first domain and the second domain, (2) an absolute target capacity that is specific to the first domain, or (3) a relative target capacity that is specific to virtualized network function level targets. The method may also include receiving a notification that a virtualization network function has been updated based on the transmitted scaling request.
Abstract:
Various communication systems may benefit from methods, apparatuses, and systems for data collection. For example, wireless communication systems of the third generation partnership project (3GPP) may benefit from data collection in network management layer coverage and capacity optimization. For example, a method may include sending performance measurement job activation indicating that minimization of drive test data is to be collected (in an alternative, the job can be configured to indicate that non-MDT data is to be collected). The method may also include receiving performance measurements in response to the job activation.
Abstract:
A technique is provided for receiving a resource request by a first base station (BS) of a first Radio Access Technology (RAT) from one or more user devices, selecting resources, from a group of resources shared by BSs of a plurality of different RATs, to be scheduled for the one or more requesting user devices, scheduling, by the first BS, the selected resources for the one or more user devices, and sending, from the first BS, a resource scheduling announcement identifying the scheduled resources to one or more other BSs including at least a second BS of a second RAT. Another example technique may include receiving a resource scheduling request from a first base station (BS) implementing a first RAT, confirming an availability of the requested resources, and sending a first resource scheduling announcement to one or more BSs implementing other RATs.
Abstract:
An apparatus for use by a communication network element or function configured to act as a management controller in a communication network, the apparatus comprising at least one processing circuitry, and at least one memory for storing instructions to be executed by the processing circuitry, wherein the at least one memory and the instructions are configured to, with the at least one processing circuitry, cause the apparatus at least: to conduct a creation and activation of at least one data source function instance for configuring a data source being not standardized for usage in the communication network to provide data to a data consumer formed by a communication network element or function in a data format allowing the data consumer to process the data, wherein the creation and activation comprises associating the data source function instance to meta data describing either a non-communication network standardized data type or a proprietary data type using attributes defined to the respective data type, and associating the data source function instance to context data describing a generation time of data to be provided to the data consumer and a scope of data to be provided to the data consumer including a relation to a part of the communication network.
Abstract:
There are provided measures for conflict resolution in a network virtualization scenario, wherein a virtualized network function is utilized by a first virtualized network service managed by a first network component and a second virtualized network service managed by a second network component. The measures comprise requesting, by the first network component, an alteration of the virtualized network function, transmitting information indicative of the alteration of the virtualized network function to the second network component, and determining when the alteration of the virtualized network function impacts the second virtualized network service.
Abstract:
Systems, methods, apparatuses, and computer program products for moving VNF instances between network service instances are provided. One method includes, when a real network service is being instantiated, transmitting or receiving a move virtualized network function (VNF) operation to move at least one virtualized network function (VNF) instance from a source network service to a target network service.
Abstract:
There are provided measures for conflict resolution in a network virtualization scenario, wherein a virtualized network function is utilized by a first virtualized network service managed by a first network component and a second virtualized network service managed by a second network component. The measures comprise requesting, by the first network component, an alteration of the virtualized network function, transmitting information indicative of the alteration of the virtualized network function to the second network component, and determining when the alteration of the virtualized network function impacts the second virtualized network service.