Abstract:
Various communication systems may benefit from managing signal interference. For example, certain wireless communication systems may benefit from a dynamic time division duplex system involving slot allocation. A method includes allocating, by an access point, in a time division duplex frame a plurality of radio resource slots, each one of the plurality of radio resource slots being allocated for a downlink or an uplink transmission, and determining that the allocation of the downlink or uplink transmission should be changed. The method also includes applying a permutation pattern to re-allocate at least one of the plurality of radio resource slots for the downlink or uplink transmission.
Abstract:
A method and apparatus can be configured to transmit a number of azimuth antenna elements. The method can also comprise transmitting a number of elevation antenna elements. The method can also comprise receiving an azimuth precoder-matrix-indicator. The method can also comprise receiving an elevation precoder-matrix-indicator. The method can also comprise transmitting based on the received azimuth precoder-matrix-indicator and the received elevation precoder-matrix-indicator.
Abstract:
Methods, apparatuses, systems, and computer program products for obtaining full channel knowledge between each transmitter and each receiver when using radio frequency (RF) beamforming are provided. One method described herein includes a method of obtaining channel knowledge at a transmitter with Q transmit antennas for use in beamforming where the transmitter transmits sounding waveforms from B orthogonal basis functions from a transmit array comprised of the Q transmit antennas. In response to the transmitted sounding waveforms the transmitter receives at least one feedback message from a receiver. The feedback message(s) may include an indication of the best MB basis functions plus a gain and phase value for each of the MB basis functions.
Abstract:
Systems and techniques for carrier aggregated beamforming using elevation control. A base station determines a first elevation to be used for transmission to a user device using a first carrier, for example, based on information received from the user device. A second elevation, for transmission to the user device based on the second carrier, is determined based at least in part on the elevation information determined for the first carrier. The first and second carriers may be used by the same base station or by different base stations, and using elevation information determined for the first carrier to determine elevation information for the second carrier avoids computation and signaling needed for separate determination of the elevation information for the second carrier.
Abstract:
Systems, methods, apparatuses, and computer program products for backhaul scheduling in a multi-hop network are provided. One method includes providing, in the multi-hop network, an uplink control portion and a downlink control portion and a data portion in a slot. The method may further include scheduling, by an access point in the multi-hop network, at least one of a backhaul transmission for the slot or at least one following slot or an access transmission for the slot.
Abstract:
The exemplary embodiments of the invention provide at least a method and an apparatus to determine a beacon signal for a network node, where the network node is configured to connect with a cluster of access points in a wireless communication network, and where the beacon signal identifies the cluster; and send the beacon signal towards the wireless communication network. Further, the exemplary embodiments of the invention provide at least a method and an apparatus to determine a dominant access point of a cluster of access points based on signaling from at least one access point associated with the cluster of access points; and in response to the determining, direct communications towards the dominant access point of the cluster of access points.
Abstract:
Systems and techniques for elevation beam design. Characteristics, such as number, distribution, and geographical location of elements subject to interference by elevation beams of a base station are analyzed, and a configuration for an antenna array is determined so as to create a set of elevation beams directed so as to avoid interference with the elements subject to interference by the base station. Configuration may, for example, include configuration of the antenna array so as to create a set of elevation beams exhibiting nulls and sidelobes in appropriate locations and at appropriate angles so as to avoid interference.
Abstract:
A method and apparatus can be configured to transmit a number of azimuth antenna elements. The method can also comprise transmitting a number of elevation antenna elements. The method can also comprise receiving an azimuth precoder-matrix-indicator. The method can also comprise receiving an elevation precoder-matrix-indicator. The method can also comprise transmitting based on the received azimuth precoder-matrix-indicator and the received elevation precoder-matrix-indicator.
Abstract:
Systems, methods, apparatuses, and computer program products for random access channel (RACH) design using basis functions are provided. One method includes receiving, at an access point employing a receiver with Q antennas, a random access channel (RACH) preamble sent from a mobile unit. The receiving may comprise receiving the same RACH preamble at B different time intervals where the access point beamforms with a different beam selected from B basis function beams at each of the different time intervals.