Abstract:
An apparatus and method for handling tiny numbers using a super sticky bit are provided. In response to detecting that a preliminary result of an instruction corresponds to a tiny number and an underflow exception is masked, an execution pipeline can be configured to store a value corresponding to the preliminary result and a super sticky bit in a destination register. Also, a destination register tag corresponding to the destination register and a denormal exception indicator corresponding to the tiny number and masked underflow exception can be stored. A trap handler can be initiated to generate a corrected result for the instruction. The trap handler can detect that the denormal exception indicator has been set and can read the value and the super sticky bit from the destination register using the destination register tag. The trap handler can generate a corrected result for the instruction based on the value and the super sticky bit. An instruction subsequent to the trapping instruction can then be restarted.
Abstract:
A multiplier configured to obtain higher frequencies of exactly rounded results by adding an adjustment constant to intermediate products generated during iterative multiplication operations is disclosed. One such iterative multiplication operation is the Newton-Raphson iteration, which may be utilized by the multiplier to perform reciprocal calculations and reciprocal square root calculations. For each iteration, the results converge toward an infinitely precise result. To improve the frequency of the exactly rounded result, the results of the iterative calculations may be studied for a large number of differing input operands to determine the best suited value for the adjustment constant. The multiplier may also be configured to perform scalar and packed vector multiplication using the same hardware.
Abstract:
An execution unit configured to perform a plurality of arithmetic operations using the same set of operands. These operands include corresponding input vector values in each of a plurality of input registers. The execution unit is coupled to receive these input vector values, as well as an instruction value indicative of one of the plurality of arithmetic operations. In one embodiment, the plurality of arithmetic operations includes a vectored add instruction, a vectored subtract instruction, a vectored reverse subtract instruction, and an accumulate instruction. The vectored instructions perform arithmetic operations concurrently using corresponding values from each of the plurality of input registers. The accumulate instruction, however, is executable to add together all input values within a single input register. The execution unit further includes a multiplexer unit configured to selectively route the input vector values to a plurality of adder units according to the opcode value. In an embodiment in which the execution unit is configured to perform subtraction operations as well as addition, the multiplexer unit is additionally configured to selectively route negated versions (either one's or two's complement format) to the plurality of adder units. Each of the plurality of adder units is configured to generate a sum based upon the values conveyed from the multiplexer unit. The accumulate instruction advantageously allows important operations such as the matrix multiply to be performed rapidly. Because the matrix multiply is an integral part of many applications (particularly graphics applications), the accumulate instruction may lead to increased overall system performance.
Abstract:
One embodiment of the present invention sets forth a technique for performing fast integer division using commonly available arithmetic operations. The technique may be implemented in a two-stage process using a single-precision floating point reciprocal in conjunction with integer addition and multiplication. Furthermore, the technique may be fully pipelined on many conventional processors for performance that is comparable to the best available high-performance alternatives.
Abstract:
In parallel processing devices, for streaming computations, processing of each data element of the stream may not be computationally intensive and thus processing may take relatively small amounts of time to compute as compared to memory accesses times required to read the stream and write the results. Therefore, memory throughput often limits the performance of the streaming computation. Generally stated, provided are methods for achieving improved, optimized, or ultimately, maximized memory throughput in such memory-throughput-limited streaming computations. Streaming computation performance is maximized by improving the aggregate memory throughput across the plurality of processing elements and threads. High aggregate memory throughput is achieved by balancing processing loads between threads and groups of threads and a hardware memory interface coupled to the parallel processing devices.
Abstract:
The present invention enables efficient matrix multiplication operations on parallel processing devices. One embodiment is a method for mapping CTAs to result matrix tiles for matrix multiplication operations. Another embodiment is a second method for mapping CTAs to result tiles. Yet other embodiments are methods for mapping the individual threads of a CTA to the elements of a tile for result tile computations, source tile copy operations, and source tile copy and transpose operations. The present invention advantageously enables result matrix elements to be computed on a tile-by-tile basis using multiple CTAs executing concurrently on different streaming multiprocessors, enables source tiles to be copied to local memory to reduce the number accesses from the global memory when computing a result tile, and enables coalesced read operations from the global memory as well as write operations to the local memory without bank conflicts.
Abstract:
Systems and methods for reducing the bandwidth needed to read the inputs to a matrix multiply operation may improve system performance. Rather than reading a row of a first input matrix and a column of a second input matrix to produce a column of a product matrix, a column of the first input matrix and a single element of the second input matrix are read to produce a column of partial dot products of the product matrix. Therefore, the number of input matrix elements read to produce each product matrix element is reduced from 2N to N+1, where N is the number of elements in a column of the product matrix.
Abstract:
An execution unit is provided for executing a first instruction which includes an opcode field, a first operand field, and a second operand field. The execution unit includes a first input register for receiving a first operand specified by a value of the first operand field, and a second input register for receiving a second operand specified by a value of the second operand field. The execution unit further includes a comparator unit which is coupled to receive a value of the opcode field for the first instruction. The comparator unit is also coupled to receive the first and second operand values from the first and second input registers, respectively. The execution further includes a multiplexer which receives a plurality of inputs. These inputs include a first constant value, a second constant value, and the values of the first and second operand. If the decoded opcode value received by the comparator indicates that the first instruction is either a compare or extreme value function, the comparator conveys one or more control signals to the multiplexer for the purpose of selecting an output of the multiplexer as the result of the first instruction. If the first instruction is one of a plurality of extreme value instructions, the one or more control signals conveyed by the comparator unit select between the first operand and second operand to determine the result of the first instruction. If the first instruction is one of a plurality of compare instructions, the one or more control signals conveyed by the comparator unit select between the first and second constant value to determine the result of the first instruction. In another embodiment, a similar execution unit is provided which handles vector operands.
Abstract:
A microprocessor with a floating point unit configured to rapidly execute floating point load control word (FLDCW) type instructions in an out of program order context is disclosed. The floating point unit is configured to schedule instructions older than the FLDCW-type instruction before the FLDCW-type instruction is scheduled. The FLDCW-type instruction acts as a barrier to prevent instructions occurring after the FLDCW-type instruction in program order from executing before the FLDCW-type instruction. Indicator bits may be used to simplify instruction scheduling, and copies of the floating point control word may be stored for instruction that have long execution cycles. A method and computer configured to rapidly execute FLDCW-type instructions in an out of program order context are also disclosed.
Abstract:
A multimedia execution unit configured to perform vectored floating point and integer instructions. The execution unit may include an add/subtract pipeline having far and close data paths. The far path is configured to handle effective addition operations and effective subtraction operations for operands having an absolute exponent difference greater than one. The close path is configured to handle effective subtraction operations for operands having an absolute exponent difference less than or equal to one. The close path is configured to generate two output values, wherein one output value is the first input operand plus an inverted version of the second input operand, while the second output value is equal to the first output value plus one. Selection of the first or second output value in the close path effectuates the round-to-nearest operation for the output of the adder. The execution unit may be configured to perform vectored addition and subtraction, integer/floating point conversion, reverse subtraction, accumulate, extreme value (minimum/maximum), and comparison instructions.