Abstract:
A contact lens for use with a surgical microscope may be equipped with an anti-fogging device to prevent obscuring the view of a surgeon due to condensation during ophthalmic surgery. The anti-fogging device may deliver thermal energy to a surface of the contact lens to heat the contact lens above an ambient dew point. The thermal energy may be delivered by an air duct with a fan nozzle, a fluid duct in thermodynamic contact with the contact lens circulating a heat transfer fluid, or generated with electrical energy to an electrical heating element disposed on the surface of the contact lens. The thermal or electrical energy may be delivered via a handle for supporting the contact lens during surgery.
Abstract:
En face or 3D volumetric OCT imaging during ophthalmic surgery may be performed with an OCT scanning controller that interfaces to an OCT scanner used with a surgical microscope. The OCT scanner may generate en face images before and after surgical operations, such as retinal membrane peeling, are performed. Using digital subtraction on the en face images, an overlay image indicative of the changes from the surgical operations to the eye may be generated and overlaid onto an optical image displayed to a user of the surgical microscope.
Abstract:
Systems, apparatuses, and methods of and for an ophthalmic surgical system are disclosed. An ophthalmic surgical system may include a vitrectomy probe having a housing sized and shaped for grasping by a user. The vitrectomy probe may also include a cutter extending from the housing and being sized to penetrate and treat a patient eye. The cutter may include an outer cutting tube coupled to the housing. The outer cutting tube may have an outer port formed therein that is sized and shaped to receive tissue. The cutter may include a rotatable inner cutting member disposed within the outer cutting tube. The inner cutting member may include a first cutting surface that rotates across the outer port to cut the tissue when the inner cutting member is rotated. The vitrectomy probe may include a pneumatic vane actuator positioned within the housing and configured to rotate the inner cutting member.
Abstract:
An ophthalmic surgical microscope can include a movable optical element positioned in an optical pathway of light reflected from a surgical field. The movable optical element can be configured to oscillate in a direction along the optical pathway. The microscope can include an actuator coupled to the movable optical element and configured to move in response to a control signal. The microscope can include a computing device in communication with the actuator and configured to generate the control signal to move the movable optical element. In some embodiments, the computing device is configured to generate the control signal to move the movable optical element with an oscillation frequency greater than the critical flicker fusion rate.
Abstract:
Described herein is an arm stabilization member for dampening inadvertent movement of the arm of a user during a surgical procedure, comprising an arm support and a movement mechanism coupled to the arm support. The arm support comprises an outer frame sized to support at least a portion of the user's arm and an inner pad lining an inner surface of the outer frame and configured to conform to the user's arm. The movement mechanism comprises a counterbalance system movably connected by joints and configured to compensate for the gravitational forces exerted by the arm of the user.
Abstract:
This disclosure relates to a tissue separation system to separate the posterior vitreous cortex from the inner limiting membrane in the eye, and to the separation of other body tissues. A system includes a flexible elongate member having a proximal end and a distal end. The flexible elongate member is coupled to a fluid reservoir and has a lumen configured to deliver fluid from the reservoir for use in a surgical procedure and further includes a pump system coupled to the proximal end of the flexible elongate member and to the fluid reservoir, configured to pressurize the fluid to a pressure suitable for separating tissues. The system also includes a control system arranged to control the pump system to provide a series of pulses of fluid through the flexible elongate member and out from the distal end thereof to suitably separate the tissues during the surgical procedure.
Abstract:
A method of imaging in an ophthalmic surgical procedure can include determining an excitation wavelength of light associated with a vital stain; transmitting light having the excitation wavelength; determining an emission wavelength of light associated with the vital stain; filtering light using a first optical element to allow transmission of light having the emission wavelength and to block light having the excitation wavelength. An ophthalmic surgical imaging system can include a light source, one or more optical elements, an image sensor, a computing device, and/or a display device to visualize target biological tissue stained with a fluorescent vital stain. A method of imaging in an ophthalmic surgical procedure can include determining a wavelength of light that increases the visual contrast of a vital stain; transmitting light having the determined wavelength; and receiving a reflection of the transmitted light such that target biological tissue stained by the vital stain is accentuated.
Abstract:
OCT-enabled injection for vitreoretinal surgery may involve using an OCT image to detect when a surgical injector penetrates a desired tissue layer of the eye for receiving an injection. The injection may be triggered or automatically actuated based on the detection of the surgical injector from the OCT image.
Abstract:
The present disclosure describes systems and methods for pressure-driven micro-surgical tool actuation. The systems and methods may encompass the use of a remote handle held by a first hand of a user as well as a surgical tool located in the eye of a patient. A primary actuator may be included in remote handle and operable to be actuated by a mechanical force exerted on the handle. Actuating the primary actuator pressurizes a fluid within a length of tubing. The pressurized fluid may be transmitted to a dynamic tool held by a second hand of the user, where the pressurized fluid may be used to actuate a subordinate actuator. Actuation of the subordinate actuator may actuate a dynamic component of the dynamic tool.
Abstract:
This disclosure relates to a tissue separation system to separate the posterior vitreous cortex from the inner limiting membrane in the eye, and to the separation of other body tissues. A system includes a flexible elongate member having a proximal end and a distal end. The flexible elongate member is coupled to a fluid reservoir and has a lumen configured to deliver fluid from the reservoir for use in a surgical procedure and further includes a pump system coupled to the proximal end of the flexible elongate member and to the fluid reservoir, configured to pressurize the fluid to a pressure suitable for separating tissues. The system also includes a control system arranged to control the pump system to provide a series of pulses of fluid through the flexible elongate member and out from the distal end thereof to suitably separate the tissues during the surgical procedure.