Abstract:
A scanning-endoscope image evaluation system includes: a scanning endoscope provided with a light detector and a fiber scanner that includes an optical fiber for guiding illumination light coming from a light source and emitting it from its distal end and an actuator that scans the emitted illumination light by vibrating the distal end of the optical fiber; and a chart for evaluating a characteristic of an image acquired by the scanning endoscope, wherein the distal end of the optical fiber and the light detector are disposed so as to face each other with the chart sandwiched therebetween, and forward scattered light that has been emitted from the optical fiber and that has passed through the chart is detected by the light detector.
Abstract:
A method of measuring scanning characteristics of an optical scanning apparatus allows measurement of scanning characteristics of an actuator. The method includes bringing a tip of the optical scanning apparatus and a chart for measuring scanning characteristics closer together and irradiating illumination light with the actuator in a non-driven state, separating the tip and the chart for measuring scanning characteristics by a predetermined distance while maintaining the relative orientations thereof, and adjusting a drive signal of the actuator so that a scanning area of the illumination light on the chart for measuring scanning characteristics can form a desired shape. At least one of an angle of deviation and a viewing angle is measured using an irradiation position of the illumination light on the chart for measuring scanning characteristics.
Abstract:
Provided is a method for calculating a scanning pattern of light and an optical scanning apparatus. The method includes the steps of: detecting a resonance frequency and an attenuation coefficient of an oscillation part of an optical fiber which guides light from a light source and irradiates an object with the light; and calculating a scanning pattern of the light, based on the detected resonance frequency and attenuation coefficient. The apparatus includes: an optical fiber which guides light from a light source and irradiates an object with the light; a scanning part which drives an oscillation part oscillatably supported of the optical fiber; a detector which detects a resonance frequency of the oscillation part; a calculation part which determines an irradiation position of the light using a scanning pattern calculated based on the resonance frequency detected by the detector and the attenuation coefficient obtained in advance.
Abstract:
An optical scanning device includes an optical fiber, a holding member cantilevering the optical fiber, a first driving device placed on the distal end of the optical fiber and making the optical fiber vibrate in a first direction, and a second driving device placed between the holding member for the optical fiber and the first driving device and making the optical fiber vibrate in a second direction which crosses the first direction.
Abstract:
A lithotripsy apparatus includes: a treatment laser beam source that emits a treatment laser beam that crushes a stone; a guide light source that emits guide light; a photodetector that detects return light that returns as a result of the emitted guide light being reflected at the stone; and a processor including hardware, the processor being configured to: measure a distance from the treatment laser beam source to the stone on the basis of the return light; determine a condition of a bubble occurring between the treatment laser beam source and the stone on the basis of the measured distance; and adjust a light quantity of the treatment laser beam on the basis of the determined condition of the bubble.
Abstract:
A scanning observation apparatus (10) deflects illumination light with an actuator (25) through an illumination optical system (26) to scan an object (32), subjects light from the object (32) to photoelectric conversion with an optical detector (44), performs processing with an image processor (46), and displays an image of the object (32) on a display (60). A memory (35) stores information on optical characteristics related to chromatic aberration of magnification of the illumination optical system (26) relative to light of predetermined colors. A scanning pattern calculator (45) calculates a scanning pattern, on the object (32), of light of each color using the information. Using the scanning pattern, the image processor (46) calibrates a plot position yielded by a photoelectric conversion signal from the optical detector (44) for light of each color and generates an image of the object (32), thereby more easily correcting the chromatic aberration of magnification.
Abstract:
An optical scanning endoscope apparatus includes: an illumination optical fiber that emits light from a tip part oscillatably supported; an actuator that drives the tip part of the illumination optical fiber; and a signal generator that generates, with respect to the actuator, a drive signal for causing the tip part of the illumination optical fiber to spiral scan. The signal generator generates the drive signal which includes: an amplitude expansion period for expanding the amplitude of the drive signal of the fiber from substantially 0 to a maximum value; and an amplitude contraction period for contracting the amplitude of the drive signal from the maximum value to substantially 0, the drive signal having an envelope that smoothly continues, with a gradient of substantially 0, across a border between the periods, with the longer one of the periods being defined as an effective scanning period.
Abstract:
An optical fiber is vibrated at an emitting end part by a scanning part, and light is irradiated from an emitting end face of the optical fiber onto an object to scan the object. The scanning part includes a pair of first direction coils facing each other in a first direction across the emitting end part, and a permanent magnet installed as penetrating the emitting end part. The permanent magnet is magnetized in the axial direction of the emitting end part. The scanning part drives, by supplying power to the first direction coils, the emitting end part to vibrate in the first direction in the second or higher-order resonance mode, forming nodes of the vibration within the permanent magnet. When in a state of non-vibration in the first direction, a relative distance between the permanent magnet and the first direction coils is smaller than that in other directions.
Abstract:
Provided is an optical scanning unit including: an optical fiber; an actuator; a reducing part; a detection part; and a controller. The optical fiber oscillates the emitting end, to thereby scan the object. The actuator oscillates the emitting end. The reducing part reduces the transmission of light emitted from the emitting end. The detection part detects light at the object when light is irradiated onto the object. The controller forms an image, based on light detected by the detection part and the state of oscillation of the optical fiber. The controller calculates the eccentricity in the image thus formed, based on a position where the received amount of light is reduced and the center position of the image.
Abstract:
An optical scanning endoscope apparatus, includes: an irradiation fiber having an emitting end thereof oscillatably supported and irradiating light from a light source part onto an object; and a drive mechanism for driving the emitting end so as to cause light from the light source to be irradiated onto the object, in which the apparatus has a first irradiation mode as an imaging mode (corresponding to t1) for repeatedly scanning a desired region of the object with light from the light source and a second irradiation mode (corresponding to t4) for irradiating, between the temporally-adjacent scans in the first irradiation mode, a designated region selected from the desired region of the object, and provides, when the second irradiation mode is started, the drive mechanism with an offset signal (I0) for irradiating the designated region, and maintains the offset signal while repeating the irradiation in the second irradiation mode.