Abstract:
Readout circuitry to readout an array of image sensor pixels includes readout units that include a plurality of analog-to-digital converters (“ADCs”), a plurality of blocks of Static Random-Access Memory (“SRAM”), and a plurality of blocks of Dynamic Random-Access Memory (“DRAM”). The plurality ADCs is coupled to readout analog image signals two-dimensional blocks of the array of image sensor pixels. The plurality of blocks of SRAM is coupled to receive digital image signals from the ADCs. The digital image signals are representative of the analog image signal readout from the two-dimensional block of pixels. The plurality of blocks of DRAM is coupled to the blocks of SRAM. Each block of SRAM is coupled to sequentially output the digital image signals to each of the blocks of DRAM. Each of the readout units are coupled to output the digital image signals as a plurality of Input/Output (“IO”) signals.
Abstract:
A floorplan-optimized stacked image sensor and a method for designing the sensor are disclosed. A sensor layer includes multiple PSAs partitioned into PSA groups. A circuit layer includes multiple analog-to-digital converters each communicatively coupled to a different PSA. Each analog-to-digital converter (ADC) is semi-aligned to the PSA group associated with the PSA to which it is communicatively coupled. The floorplan of ADCs maximizes contiguous global-based space on the circuit layer uninterrupted by an ADC. The resulting circuit layer floorplan has one or more global-based spaces interleaved with one or more local-based spaces containing ADCs.
Abstract:
A method of detecting light-emitting diode (LED) light starts with a control circuitry generating a shutter signal that is transmitted to a pixel array to control image acquisition by the pixel array and to establish a set exposure time. The readout circuitry may then read out the image data from the pixel array that includes reading out the image data from a plurality of successive and overlapped frames having the set exposure time. The set exposure time may be the same for each of the frames. The successive and overlapped frames may be interlaced frames. Other embodiments are also described.
Abstract:
An image sensor includes a pixel array disposed in a first semiconductor die. The pixel array is partitioned into a plurality of pixel sub-arrays. Each one of the plurality of pixel sub-arrays is arranged into a plurality of pixel groups. Each one of the plurality of pixel groups is arranged into a p×q array of pixel cells. A plurality of readout circuits is disposed in a second semiconductor die. An interconnect layer is stacked between the first semiconductor die and the second semiconductor die. The interconnect layer includes a plurality of conductors. Each one of the plurality of pixel sub-arrays is coupled to a corresponding one of the plurality of readout circuits through a corresponding one of the plurality of conductors.