Abstract:
In various embodiments, an optoelectronic component device is provided. The optoelectronic component device may include a linear regulator designed for providing an electric current; an optoelectronic component formed for converting the electric current into an electromagnetic radiation; and an electrothermal transducer designed for converting the electric current into a temperature difference. The electrothermal transducer is thermally coupled to the optoelectronic component, and the optoelectronic component and the electrothermal transducer are electrically coupled in series with the linear regulator.
Abstract:
According to the present disclosure, an optoelectronic component is provided with an organic layer stack, in which light is generated in operation of the optoelectronic component, at least one marking element, by means of which the optoelectronic component is identifiable, wherein the at least one marking element can be read out under irradiation using electromagnetic radiation from the nonvisible spectral range, the at least one marking element can be read out at a main surface of the optoelectronic component, and wherein the at least one marking element is arranged at or under the main surface in the region of the illuminated area.
Abstract:
In various embodiments, an organic light-emitting organic is provided. The organic light-emitting component may include a first electrode layer, an organic functional layer structure over the first electrode layer, and a second electrode layer over the organic functional layer structure. The second electrode layer and the organic functional layer structure are divided into subregions which are arranged laterally next to one another, which are respectively at least partially separated from one another. A plurality of the subregions are electrically connected to at least two neighboring subregions by at least two corresponding connecting elements with are formed by the second electrode layer and the organic functional layer structure.
Abstract:
In various embodiments, an optoelectronic component device is provided. The optoelectronic component device may include a linear regulator designed for providing an electric current; an optoelectronic component formed for converting the electric current into an electromagnetic radiation; and an electrothermal transducer designed for converting the electric current into a temperature difference. The electrothermal transducer is thermally coupled to the optoelectronic component, and the optoelectronic component and the electrothermal transducer are electrically coupled in series with the linear regulator.
Abstract:
Various embodiments may relate to an optoelectronic component. The optoelectronic component may include a planar optically active structure and an electric circuit structure. The planar optically active structure is designed to receive and/or provide electromagnetic radiation. The electric circuit structure is designed such that it provides an output value. The output value is dependent on at least one operational parameter of the optically active structure.
Abstract:
An organic light-emitting diode includes a substrate with a top; an organic layer on the top that generates radiation; first and second electrical contact area at or on the top that electrically contacts the diode; a holding device by which the diode is mechanically supported and electrically contacted; and a cover sheet on a side of the organic layer remote from the substrate that protects the organic layer, wherein at least one opening is in the cover sheet and the opening, in plan view, is surrounded by the cover sheet and the organic layer; the areas are located at an edge of the opening and freely accessible; the device engages through the opening; the first area has a different average distance from the opening than the second area; and the electrical areas are each arranged concentrically around the opening and partially or completely surround the opening in plan view.
Abstract:
An optoelectronic circuit includes at least one first and second light emitting diodes; a switch arrangement connected between the first and second diodes and configured to switch over the first and second diodes between series and parallel circuits depending on a predefined ambient parameter; and a current matching circuit for matching the currents through the first and second diodes in case of parallel connection. The current matching circuit includes a current mirror circuit, including first and second current mirror transistors connected via its collector terminal to the first/second diodes, respectively. The arrangement includes a diode/a switch for connecting the first diode in series with the second diode and is configured to form the series circuit including the first and second diodes while bypassing the current matching circuit so that, in case of series connection, the first transistor is switched in a high-resistance fashion and the second transistor is short-circuited.
Abstract:
An optoelectronic assembly and method for operating an optoelectronic assembly are provided herein. The optoelectronic assembly may include an organic light-emitting component, a temperature sensor for recording a temperature value, and a controller coupled to the organic light-emitting component and to the temperature sensor. The controller may be configured to apply an alternating current (AC) voltage to the organic light-emitting component when the organic light-emitting component is switched on, and if the recorded temperature value is less than a predetermined temperature threshold value, where the AC voltage may, at least, temporarily less than an instantaneous threshold voltage of the organic light-emitting component. The controller may also be configured to apply a direct current (DC) voltage to the organic light-emitting component if a measurement value is greater than or equal to a predetermined threshold value, where the DC voltage is greater than the instantaneous threshold voltage of the organic light-emitting component.
Abstract:
A method for operating an optoelectronic assembly which includes at least one component string having at least one section, wherein the section includes at least one light emitting diode element, is provided. According to the method, the section is supplied with electrical energy, the supply of the section with electrical energy is interrupted, an input of the section is electrically coupled to an output of the section, wherein the section is short-circuited via the electrical coupling of the input to the output, a maximum value of an electrical discharge current which flows via the section is detected, and the fact of whether the section of the component string has a short circuit is determined depending on the detected maximum value.
Abstract:
An illuminant may include at least one light-emitting element unit, which has a carrier, at least one light-emitting element arranged on the carrier and is surrounded by an encapsulating material, at least one contact area formed on the carrier, and at least one contact element arranged on the contact area, wherein the light-emitting element surrounded by the encapsulating material is electrically connected to the contact element via the contact area, and at least one mating contact element, wherein electrical contact can be made between the mating contact element and the contact element via a plug-type connection, wherein the contact element is a female connector element, and the mating contact element is a male connector element and having a plurality of pin contact elements, or the contact element is a male connector element and having a plurality of pin contact elements, and the mating contact element is a female connector element.