摘要:
A periodic stationary object detection system extracts a feature point of a three-dimensional object from image data on a predetermined region of a bird's eye view image for each of multiple sub regions included in the predetermined region, calculates waveform data corresponding to a distribution of the feature points in the predetermined region on the bird's eye view image, and judges whether or not the three-dimensional object having the extracted feature point is a periodic stationary object candidate on the basis of whether or not peak information of the waveform data is equal to or larger than a predetermined threshold value.
摘要:
A driving assistance device includes a camera, a moving object detector, a candidate reflection region detector, a predetermined position brightness detector and a cause determiner. The moving object detector and the candidate reflection region detector sets a detection region for detecting, from image data captured by the camera, existence of an adjacent vehicle in an adjacent lane. The predetermined position brightness detector detects a candidate light projecting object which projects light with brightness equal to or higher than a predetermined threshold value. The cause determiner determines whether or not there exists a candidate light projecting object which indicates existence of the adjacent vehicle in the detection region.
摘要:
A three-dimensional object detection device 1 includes a camera 10 and a calculator 20. The calculator 20 performs viewpoint conversion processing on an image captured by the camera 10 to create a bird's eye view image, calculates, for each of a plurality of positions along a vertical imaginary line extending in a vertical direction in an actual space, a luminance difference between two pixels near the position, and detects a three-dimensional object on the basis of continuities of the calculated luminance differences of the respective positions.
摘要:
A three-dimensional object detection device 1 includes a camera 10 and a calculator 20. The calculator 20 performs viewpoint conversion processing on an image captured by the camera 10 to create a bird's eye view image, calculates, for each of a plurality of positions along a vertical imaginary line extending in a vertical direction in an actual space, a luminance difference between two pixels near the position, and detects a three-dimensional object on the basis of continuities of the calculated luminance differences of the respective positions.
摘要:
A driving assistance system 1 is installed in a moving object and includes; image-capturing means 10 to capture a surrounding image I including a portion of the moving object, first edge line storing means 22 to store a first edge line E1 detected from a first surrounding image I captured in normal conditions by the image-capturing means 10, and calculating means 23 to calculate a matching degree between the first edge line E1 and a second edge line E2 detected from a second surrounding image I currently captured by the image-capturing means 10. A raindrop judging means 24 judges that a raindrop is attached to the lens unit of the image-capturing means 10 in response to a decrease in the matching degree between the first edge line E1 and the second edge line E2.
摘要:
A three-dimensional object detection device can enhance the accuracy in detecting a three-dimensional object regardless of the brightness in the detection environment. The device has an image capture means that captures an image of a predetermined area and an image conversion means that converts the image through a viewpoint conversion into birds-eye view image. A first three-dimensional object detection means aligns positions of bird's-eye view images at different times obtained by the image conversion means, counts the number of pixels that exhibit a predetermined difference on a differential image of the aligned bird's-eye view images to generate a frequency distribution thereby creating differential waveform information, and detects a three-dimensional object on the basis of the differential waveform information. A second three-dimensional object detection means detects edge information from the bird's-eye view image obtained by the image conversion means and detects a three-dimensional object on the basis of the edge information.
摘要:
A three-dimensional object detection device can enhance the accuracy in detecting a three-dimensional object regardless of the brightness in the detection environment. The device has an image capture means that captures an image of a predetermined area and an image conversion means that converts the image through a viewpoint conversion into birds-eye view image. A first three-dimensional object detection means aligns positions of bird's-eye view images at different times obtained by the image conversion means, counts the number of pixels that exhibit a predetermined difference on a differential image of the aligned bird's-eye view images to generate a frequency distribution thereby creating differential waveform information, and detects a three-dimensional object on the basis of the differential waveform information. A second three-dimensional object detection means detects edge information from the bird's-eye view image obtained by the image conversion means and detects a three-dimensional object on the basis of the edge information.
摘要:
A vehicle driving control apparatus is provided with a lane detecting device, a future position estimating device and a vehicle control device. The lane detecting device detects a lane marker of a lane. The future position estimating device estimates a future transverse position of a host vehicle after a prescribed amount of time. The vehicle control device executes a vehicle control such that a yaw moment is imparted to the host vehicle toward a middle of the lane. The yaw moment is imparted upon determining that the future transverse position is positioned laterally farther toward an outside of the lane from the middle of the lane than a prescribed widthwise lane position that is determined in advance using the lane marker as a reference. The vehicle control device suppresses an impartation of the yaw moment device when a recognition degree of the lane marker is lower than a prescribed value.
摘要:
A driving assisting system for a vehicle comprises a side obstacle detector configured to detect an obstacle present in an obstacle detection area; an obstacle approach prevention controller configured to implement an obstacle approach prevention control which assists an approach prevention for preventing the vehicle from approaching an obstacle detected by the side obstacle detector; an overtaking state detector configured to detect an overtaking state which is at least one of a first state where the vehicle is overtaking the obstacle detected by the side obstacle detector and a second state where the vehicle is estimated to overtake the obstacle. The overtaking state detector is configured to detect the overtaking state based at least on (i) a distance between the vehicle and the obstacle, (ii) a speed of the vehicle relative to the obstacle, and (iii) a detection angle of the obstacle relative to the vehicle.
摘要:
[Object] An object of the present invention is to restrict an unnecessary control intervention at a scene where a vehicle avoids an obstacle etc. ahead of the vehicle by steering.[Means to Solve] A lateral object that exists on a side of the vehicle is detected (step S3), a later-arriving lateral position Xf at which the vehicle arrives after a lapse of a headway time Tt, with respect to a traffic lane, is estimated, and when the later-arriving lateral position Xf reaches a predetermined threshold value XL under the condition in which the lateral object is detected, a lane change of the vehicle in a direction to a side of the lateral object is suppressed. When detecting that the vehicle moves laterally in a direction opposite to a side of a side vehicle, an avoidance flag is set to Fa=1 (step S6). Subsequently, when the vehicle starts a lateral movement in a direction to the side of the side vehicle, a return flag is set to Fr=1 (step S7). When the return flag is set to Fr=1 in this way, a suppression flag is set to F=0 until a setting time Tm elapses, then the suppression of the lateral movement is forbidden (step S9).