Abstract:
Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. A switch may provide switching between the first and second laser sources. An ensemble of laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
Abstract:
Fiber optic devices including volume Bragg grating (VBG) elements are disclosed. A fiber optic device may include one or more optical inputs, one or more VBG elements, and one or more optical receivers. Methods for manufacturing VBG elements and for controlling filter response are also disclosed. A VBG chip, and fiber optic devices using such a chip, are also provided. A VBG chip includes a monolithic glass structure onto which a plurality of VBGs have been recorded.
Abstract:
A sensor for detecting material degradation may include an optical fiber and a housing through which the optical fiber extends. An end cap may be affixed to an end of the housing. Light provided through the optical fiber may be reflected off of the end cap back through the optical fiber. The end cap may be made of a material of interest, and may be situated in an environment wherein the material of interest is present. A light source may provide input light through the optical fiber. A portion of the input light may be reflected off of the end cap. A light receptor may receive the reflected light via the optical fiber. A processing unit may be adapted to compare a measured intensity of the reflected light to a threshold, and to initiate an alarm condition if the measured intensity is below the threshold.
Abstract:
Fiber optic devices including volume Bragg grating (VBG) elements are disclosed. A fiber optic device may include one or more optical inputs, one or more VBG elements, and one or more optical receivers. Methods for manufacturing VBG elements and for controlling filter response are also disclosed. A VBG chip, and fiber optic devices using such a chip, are also provided. A VBG chip includes a monolithic glass structure onto which a plurality of VBGs have been recorded.
Abstract:
Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. A switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
Abstract:
Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. A switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
Abstract:
Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. A switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
Abstract:
Apparatus for performing Raman analysis may include a laser source module, a beam delivery and signal collection module, a spectrum analysis module, and a digital signal processing module. The laser source module delivers a laser beam to the beam delivery and signal collection module. The beam delivery and signal collection module delivers the laser source beam to a sample, collects Raman scattered light scattered from the sample, and delivers the collected Raman scattered light to the spectrum analysis module. The spectrum analysis module demultiplexes the Raman scattered light into discrete Raman bands of interest, detects the presence of signal energy in each of the Raman bands, and produces a digital signal that is representative of the signal energy present in each of the Raman bands. The digital signal processing module is adapted to perform a Raman analysis of the sample.